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Introduction

Cosmic acceleration
Dark energy

3H 2 + k
a2

= 8πG ρm + ρr + ρde( )

SEH = −g
M∫ d4x R

16πG
− Lm − Lde

⎡
⎣⎢

⎤
⎦⎥

Examples: 
Cosmological constant

Quintessence
Chaplygin gas

Rµν −
1
2
gµνR = 8πG Tµν +T

de
µν( )

SEH = −g
M∫ d4x R

16πG
− Lm

⎡
⎣⎢

⎤
⎦⎥
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Introduction

Modified gravity

 
3H 2 + k

a2
+ B H , φ( ) = 8πG ρm + ρr( ) 3H 2 + k

a2
= 8πG ρm + ρr + ρde( )

SEH = −g
M∫ d4x R

16πG
− Lm − Lde

⎡
⎣⎢

⎤
⎦⎥

SMG= −g
M∫ d4x R

16πG
+ F R,φ,C 2,...( )− Lm⎡

⎣⎢
⎤
⎦⎥

Examples: 
Higher dimensional models

Weyl gravity
Scalar-tensor gravity

Rµν −
1
2
gµνR +M µν g,∂g,∂∂g,φ,..[ ] = 8πGTµν Rµν −

1
2
gµνR = 8πG Tµν +T

de
µν( )

Cosmic acceleration
Dark energy

SEH = −g
M∫ d4x R

16πG
− Lm

⎡
⎣⎢

⎤
⎦⎥

Examples: 
Cosmological constant

Quintessence
Chaplygin gas
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Modified gravity

• Could the late time acceleration be attributed to additional gravitational degrees of freedom?

• Rather than the Einstein Hilbert action

• One could consider a generalized action of the form

• Purely phenomenological; can different (toy) gravitational models fit the data?

SEH = −g
M∫ d4x R

16πG
− Lm

⎡
⎣⎢

⎤
⎦⎥

Rµν −
1
2
gµνR = 8πGTµν

S = −g∫ d 4x R + f (R)
16πG

− Lm
⎡
⎣⎢

⎤
⎦⎥

Tuesday, November 8, 2011



f(R) models

• f(R) gravity 

• Field equations

• The equations now contain fourth order derivatives of the metric

• Can the additional terms drive late time acceleration?

• There is a new, scalar degree of freedom that propagates

S = −g∫ d 4x R + f (R)
16πG

− Lm
⎡
⎣⎢

⎤
⎦⎥

Rµν −
1
2
gµνR + Rµν fR −

1
2
gµν f + [gµν−∇µ∇ν ] fR = 8πGTµν

General Relativity
fR =

df
dR
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Chameleon mechanism
• Chameleon mechanism; the scalar field has a mass that depends on the ‘background’ energy 

density:

• In regions of high density, the ‘effective’ scalar field potential is very large and the field does not 
propagate.

• In regions of low density, the potential relaxes.

• The (only important) question; can the scalar field roll on cosmological scales?

•

Veff φ( ) =V φ( ) + eβφρm
 
φ = dV

dφ
+ βeβφρm

• Khoury (2004)
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Modified gravity: 
Cosmology

• By taking an FRW metric ansatz, we can write down the 
modified Friedmann and acceleration equations

• We have the freedom to specify the f(R) function; we can 
reproduce any expansion history...

• Introduce an effective density

8πGρf = 3( H + H 2 ) f
i

R
i −

f
2
− 3aH 2 f

i

R
i

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

i

ds2 = −dt 2 + a2 (t) dr2 + r2 (dθ 2 + sin2θdφ 2 )⎡⎣ ⎤⎦

3H 2 = 8πG(ρc + ρr ) + 3(H
2 + H ) fR −

f
2
− 3HfR

−2 H − 3H 2 = 8πGPr + fR + 2HfR +
f
2
− ( H + 3H 2 ) fR

ρc + 3Hρc = 0

ρr + 4Hρr = 0 General Relativity
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Modified gravity:
Constraints

• However, f(R) models are subject to stringent theoretical and observational constraints, 
which restricts the allowed expansion histories 

• Theoretical constraints

fRR > 0

f (R = 0) = 0

1+ fR > 0

RfRR → 0
R→∞

• No ghost

• No early time instability

• No cosmological constant

• Return to GR at early times

• Dolgov Kawasaki (2004)
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Modified gravity:
Theoretical constraints

• The only viable                                                                          
functions are                                                                        
monotonic and                                                              
asymptote to GR                                                                         
to the past.

• We can describe such a function with two ‘modified gravity’ 
parameters.

 0.8

 0.85

 0.9

 0.95

 1

 1  2  3  4  5  6  7  8  9  10

1+
f R

(R
)

R/Rvac

δ fR0
fR R( ) ~ − Rvac

R
⎛
⎝⎜

⎞
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n

Present time

1+ fR
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f(R) models

• Simple parameterizations of the f(R) curve are considered

•  At large curvatures,

• At early times, viable models behave as the standard            
model

• However, there is no true cosmological constant! Minkowski 
space is a vacuum solution to the field equations.

λ >1 n > 0f R( ) = − Rvac
2

λ R / Rvac( )n
1+ λ R / Rvac( )n

 
f R( )  − Rvac

2
1− λ−1 Rvac

R
⎛
⎝⎜

⎞
⎠⎟
n⎛

⎝⎜
⎞

⎠⎟

ΛCDM

• Hu et al (2007)

• Starobinsky (2007)
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f(R) models

• Constraints on f(R) models;

• Local, solar system tests of gravity

• Cosmological signatures

• Luminosity distance-redshift relation

• CMB

• Matter power spectrum
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Modified gravity:
Observational constraints

• Gravity is well described by General Relativity in the solar 
system

• Shapiro time delay measured                                                 
by the Cassini probe 

| γ −1 |< 2.3×10−5 B. Bertotti, L. Iess, P. Tortora (2003)

ds2 = − 1− 2A r( ) + 2B r( )⎡⎣ ⎤⎦dt
2 + 1+ 2A r( )⎡⎣ ⎤⎦ dr

2 + r2dΩ( )

Effect due to modified gravity

g00 = −1+ 2U
gij = 1+ 2U + γ −1( )U( )δ ij

• (Hu et al, 2007)
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Modified gravity:
Observational constraints

• Solving these equations corresponds to the following 
constraint: (Hu et al, 2007)

fR (Rsol ) ~ (γ −1)GM s

rs
GM s

rs
= 2.12 ×10−6

 
| fR (Rsol ) |

Rsol
M 2

scal

< 4.9 ×10−11

 
∇2A  −4πGρm +

1
6
8πGρm − R( )

 
∇2B  1

3
8πGρm − R( )

 
∇2 fR  −

1
3
8πGρm − R( )

| γ −1 |< 2.3×10−5 Rsol ~ 8πGρsol

ρsol ~10
−24 gcm−3 ρcrit ~10

−29gcm−3
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Modified gravity:
Theoretical constraints
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Modified gravity:
Observational constraints

Present time

 1e-14

 1e-12

 1e-10

 1e-08

 1e-06

 0.0001

 0.01

 1

 1  10  100  1000  10000  100000  1e+06

|f R
|

R/Rvac

Solar system 
constraint

fR R( ) ~ Rvac
R

⎛
⎝⎜

⎞
⎠⎟
n

n = 2

Tuesday, November 8, 2011



Modified gravity:
Observational constraints
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f(R) models

• Constraints on f(R) models;

• Local, solar system tests of gravity

• Cosmological signatures

• Luminosity distance-redshift relation

• CMB

• Matter power spectrum
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• Background cosmology of f(R) models; 

• Fourth order field equations.  To simplify, we only consider the 
parameter range for which the ‘quasi-static approximation’ holds

ds2 = −dt 2 + a2 (t) dr2

1− kr2
+ r2 (dθ 2 + sin2θdφ 2 )

⎡

⎣
⎢

⎤

⎦
⎥

3H 2 = 8πG(ρc + ρr ) + 3(H
2 + H ) fR −

f
2
− 3HfR

−2 H − 3H 2 = 8πGPr + fR + 2HfR +
f
2
− ( H + 3H 2 ) fR

ρc + 3Hρc = 0

ρr + 4Hρr = 0 General Relativity

Observational signatures:
Expansion history

 fRR(RGR ) HGR
2 f R( ) = − Rvac

2
λ R / Rvac( )n
1+ λ R / Rvac( )n
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Observational signatures:
Expansion history

• Background equations in the quasi-static approximation 

3H 2 = 8πG(ρc + ρr + ρΛ )+ϖ 0 fRRH
4

ρc + 3Hρc = 0

ρr + 4Hρr = 0

Model dependent constant of 
order unity

dL z( ) = 1+ z( ) cd ′z
H ′z( )0

z

∫
f R( ) = − Rvac

2
λ R / Rvac( )n
1+ λ R / Rvac( )n

λ ~103

Figure 2: Left Panel: The luminosity distances for a ΛCDM background expansion history (solid
line; M−1

0 = 0, ν = 1.5) and the scalaron model (dashed line; M−1
0 = 375[1028h−1 eV−1], ν =

1.5; indistinguishable). Right Panel: The fractional difference between the ΛCDM cosmology and
parameterised deviation. It is clear from both panels that this framework closely mimics ΛCDM.

dL(z) = (1 + z)

� z

0

dz
�

H(z�)
. (4.1)

The results are exhibited in Figure 2, taking the fiducial parameters that we use throughout

the paper: Ωm0 = 0.25, Ωb0 = 0.05, h = 0.7, ln[As] = ln[2.34× 10−9], ns = 1 and τ = 0.9.

We contrast M−1
0 = 0.0 and ν = 1.5 (ΛCDM) with M

−1
0 = 375[1028h−1 eV−1] and ν = 1.5

(the quasi-static limit), to show the maximum difference. We observe practically no signal

for the modified gravity parameters chosen. This should come as no surprise; we have

argued above that there will only be a relatively weak signal in the background cosmology

for any model in the quasi-static approximation scheme. We can therefore effectively fix

w = −1 and wa = 0 for the duration of the paper, defined as w(a) = w + wa(1 − a).

As we will see in the following section however, for the same parameter choices there is a

significant modified gravity signal in the matter power spectrum.

4.2 The Growth of Perturbations

We now study the effect of the scalar field on the CMB angular power spectrum and matter

power spectrum. In order to do so we modify camb [64] to incorporate the generalised

modified gravity perturbation equations (2.5− 2.7), and use this to construct the modified

source terms in the Boltzmann equations.

One might first expect to observe a modified gravity signal in the angular power spec-

trum on large scales, due to the change in the metric potentials φ+ψ that modify the ISW

effect. However, as we show in Figure 3 the effect is not particularly significant (solid →
dashed line). The absence of a large modified gravity signal in the low l regime is due to

– 9 –
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• Perturbation equations (scalar perturbations only, Newtonian 
gauge) Bean et al. 2006

ds2 = a2 −(1+ 2ψ )dτ 2 + (1− 2φ)γ ijdx
idx j⎡⎣ ⎤⎦

′′δγ +
1
3
k2δγ +

4
3
k2ψ − 4 ′′φ = 0

′′δc + H ′δc + k
2ψ − 3 ′′φ − 3H ′φ = 0

(1+ fR )(ψ −φ) + fRRδR = −
3a2

2k2
8πGΣ i (ρi + pi )σ i

(1+ fR ) 2k
2φ + 6H ( ′φ + Hψ )⎡⎣ ⎤⎦ + 3 fRRH

′δR − (k2 fRR + 3H ′fRR )δR − 3HfRRδ ′R + ′fR (6Hψ + 3 ′φ ) = −8πGa2Σ iρiδ i

Fluid perturbation 
equations are unchanged

δR =
2
a2

−6 ′′a
a
ψ − 3H ′ψ + k2ψ − 9H ′φ − 3 ′′φ − 2k2φ⎡

⎣⎢
⎤
⎦⎥

Observational signatures:
Growth history
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Modified gravity:
Evolution of perturbations

• To solve these equations, we use the quasi-static limit

• At background level, the f(R) funtion satisfies

• The dominant contributions arise from terms involving

• Approximate equations

 fRR  H 2, H

k2

a2

k2φ = −4πGQ(a,k)a2δc
ψ = [1+η(a,k)]φ η =

2k2

3a2M 2 + 2k2

Q =
3a2M 2 + 2k2

3a2M 2 + 3k2

δc + 2H δc − 4πGρcθ(a,k)δc = 0 θ =
4k2 + 3a2M 2

3k2 + 3a2M 2

fRR
−1 = 3M 2
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Cosmological constraints: CMB

• CMB angular power spectrum;

• Very low modified gravity signal in the angular power spectrum, 
even on large scales.

•

λ ~103

f R( ) = − Rvac
2

λ R / Rvac( )n
1+ λ R / Rvac( )n
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Modified gravity:
Perturbations

• The power spectrum is modified at late times

•  

• f(R) models generically lead to increased power at 
‘intermediate’ scales

P(z,k) = PGR (z = 10,k)
δc (z,k)

δc (z = 10,k)
⎛
⎝⎜

⎞
⎠⎟

2

f R( ) = − Rvac
2

λ R / Rvac( )n
1+ λ R / Rvac( )n

λ ~103

Figure 4: Left Panel: Linear matter power spectra for ΛCDM (solid line; M−1
0 = 0, ν = 1.5)

and scalaron (dashed line; M−1
0 = 375[1028h−1 eV−1], ν = 1.5) cosmologies. The modification

to gravity causes a sizeable scale dependent effect in the growth of perturbations. The redshift
dependence of the scalaron can be seen by comparing the top and bottom pairs of power spectra
evaluated at redshifts z = 0.0 and z = 1.5, respectively. Right Panel: The environmental dependent
chameleon mechanism can be seen in the mildly non linear regime. We exhibit the fractional
difference (P (k) − PGR(k))/PGR(k) between the f(R) and GR power spectra for the model (2.9)
with parameters M−1

0 = 375[1028h−1 eV−1] and ν = 1.5. The dashed lines represent linear power
spectra (P (k) and PGR(k) calculated with no higher order effects) and the solid lines are the power
spectra calculated to second order. We see that the nonlinearities decrease the modified gravity
signal. This is a result of the chameleon mechanism. The top set of lines correspond to z = 0 and
the bottom to z = 0.9; demonstrating that the modified gravity signal dramatically decreases for
larger z. This is due to the scalaron mass being much larger at higher redshifts. Furthermore, non
linear effects are less significant for increasing z.

constraining f(R)-type models.

4.3 Non-linearities

There is a vast quantity of useful information in the non-linear regime. However, this sector

is one that can bias and invalidate results if not treated carefully. We now briefly discuss

approaches to analysing nonlinear physics in the context of modified gravity.

Broadly speaking, we can split the dynamics of the perturbations into three regimes.

On large scales one can simply linearise the perturbation equations, where it is not necessary

to yet account for non linearities in the fluid equations. Over an ‘intermediate’ range of

scales one can consistently treat non-linear effects by calculating the density perturbations

to higher order in a perturbative expansion. We first consider this approach, following the

recent work [47] where this problem has been studied in detail. On the smallest of scales

however perturbation theory is no longer applicable and one must resort to constructing

fitting formulas for the matter power spectrum, calibrated with N-body simulations [48,

– 11 –
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Modified gravity:
Constraints

• The growth history is far more sensitive to modified gravity than the expansion history

• Weak lensing will provide the most stringent constraints* (cluster number counts are 
exponentially sensitive to the amplitude of the matter power spectrum...)

• How well can future missions constrain these models? 

• Euclid:

• Full extra galactic sky survey with 1.2m telescope at L2

• Optimised for weak gravitational lensing

• Measurements will be precise enough to reconstruct the growth history in several redshift 
bins, allowing us to reconstruct the metric potentials and hence constrain this class of 
modified gravity models.

• To maximize the constraining power of future surveys, we must also construct the non-linear 
power spectrum.
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Modified gravity:
Weak lensing

Modified gravity signal on nonlinear 
scales is suppressed by 

non-linear effects
 (the chameleon mechanism.)

Figure 4: Left Panel: Linear matter power spectra for ΛCDM (solid line; M−1
0 = 0, ν = 1.5)

and scalaron (dashed line; M−1
0 = 375[1028h−1 eV−1], ν = 1.5) cosmologies. The modification

to gravity causes a sizeable scale dependent effect in the growth of perturbations. The redshift
dependence of the scalaron can be seen by comparing the top and bottom pairs of power spectra
evaluated at redshifts z = 0.0 and z = 1.5, respectively. Right Panel: The environmental dependent
chameleon mechanism can be seen in the mildly non linear regime. We exhibit the fractional
difference (P (k) − PGR(k))/PGR(k) between the f(R) and GR power spectra for the model (2.9)
with parameters M−1

0 = 375[1028h−1 eV−1] and ν = 1.5. The dashed lines represent linear power
spectra (P (k) and PGR(k) calculated with no higher order effects) and the solid lines are the power
spectra calculated to second order. We see that the nonlinearities decrease the modified gravity
signal. This is a result of the chameleon mechanism. The top set of lines correspond to z = 0 and
the bottom to z = 0.9; demonstrating that the modified gravity signal dramatically decreases for
larger z. This is due to the scalaron mass being much larger at higher redshifts. Furthermore, non
linear effects are less significant for increasing z.

constraining f(R)-type models.

4.3 Non-linearities

There is a vast quantity of useful information in the non-linear regime. However, this sector

is one that can bias and invalidate results if not treated carefully. We now briefly discuss

approaches to analysing nonlinear physics in the context of modified gravity.

Broadly speaking, we can split the dynamics of the perturbations into three regimes.

On large scales one can simply linearise the perturbation equations, where it is not necessary

to yet account for non linearities in the fluid equations. Over an ‘intermediate’ range of

scales one can consistently treat non-linear effects by calculating the density perturbations

to higher order in a perturbative expansion. We first consider this approach, following the

recent work [47] where this problem has been studied in detail. On the smallest of scales

however perturbation theory is no longer applicable and one must resort to constructing

fitting formulas for the matter power spectrum, calibrated with N-body simulations [48,

– 11 –
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Modified gravity:
Non-linear regime

• Use higher order perturbation theory for the mildly 
nonlinear regime

•

Higher order vertex 
functions
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Modified gravity:
Non-linear regime

• Use higher order perturbation theory for the mildly 
nonlinear regime; closure relations

• Extra terms; backreaction of the metric perturbations on the 
f(R) functional form (the chameleon mechanism!)

Π(a,k) =

�
k2

a2
+

M2

3

�
(8.9)

M2(a) = 3
dM2

dfR
(8.10)

M3 =
dM2

dfR
(8.11)

and τ = log[a]. By using the standard expansions Φa = Φ(1)
a + Φ(2)

a + Φ(3)
a + ... one can

solve (8.1) and obtain the power spectrum to any order using the definition

(2π)3δD(k+ k�
)Pab(|k|, τ) = �Φa(k, τ),Φb(k

�, τ)� (8.12)

However, rather than using this approach we instead follow [47] and directly calculate

the matter power spectrum to second order, using the so-called closure relations. Specifi-

cally one defines two additional statistical quantities in addition to Pab(a, k);

(2π)3δD(k+ k�
)Rab(|k|, τ, τ �) = �Φa(k, τ),Φb(k

�, τ �)� τ > τ � (8.13)

(2π)3δD(k− k�
)Gab(|k|, τ, τ �) =

�
δΦa(k, τ)

δΦb(k�, τ �)

�
τ > τ � (8.14)

By solving the following linearized equations for Rab(|k|, τ, τ �) , Gab(|k|, τ, τ �)

Λab(k, τ)Rbc(|k|, τ, τ �) = 0 (8.15)

Λab(k, τ)Gbc(|k|, τ, τ �) = 0 (8.16)

where

Λab = δab
∂

∂τ
+ Ωab(k, τ) (8.17)

using initial conditions Rab(|k|, τi, τi) = Pab(|k|, τi), Gab(|k|, τi, τi) = δab, one can construct

the next to leading order corrections to the power spectrum by solving the equation

Γabcd(k, τ)Pcd(|k|, τ) =
� τ

τi

dτ ��Mas(k, τ, τ
��
)Rbs(k, τ, τ

��
) +

� τ

τi

Nas(k, τ, τ
��
)Gbs(k, τ, τ

��
)

+Sas(k, τ)Psb(k, τ) + (a ↔ b) (8.18)

where

Mas(k, τ, τ
��
) = 4

�
d3k�

(2π)3
γapq(k− k�,k�, τ)γlrs(k

� − k,k, τ ��)Gql(k
�, τ, τ ��)Rpr(|k− k�|, τ, τ ��),

Nas(k, τ, τ
��
) = 2

�
d3k�

(2π)3
γapq(k− k�,k�, τ)γsrl(k− k�,k, τ ��)Rql(k

�, τ, τ ��)Rpr(|k− k�|, τ, τ ��),

Sas(k, τ, τ
��
) = 3

�
d3k�

(2π)3
σapqs(k

�,−k�,k, τ)Ppq(k
�τ),

– 23 –
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and

Γabcd = δacδbd
∂

∂τ
+ δacΩbd(k, τ) + δbdΩac(k, τ). (8.19)

It is the solution to the above set of equations that is used in section 4.3.

9. Appendix II: Solar system constraint

Finally, we discuss the origin of the solar system constraint imposed in Figure 5. Whilst

many different constraints have been imposed on f(R) models, we feel that the solar system

bound considered in (for example) [8] is both robust and model independent, and it is for

these reasons that we incorporate it.

We direct the reader to [8] for the details of the derivation, and simply state the result,

|fR(Rs)| � 5× 10
−11

(9.1)

where Rs = 8πGρs, and ρs is the typical background density at which solar system tests are

performed at. We take this conservatively to be Rs = 10
5
H

2
0 [10, 67], although a thorough

treatment would require a detailed description of the solar system density distribution.

It is straightforward to convert this bound into a constraint on the f(R) model pa-

rameters for the function (1.4); we find

|fR(Rs)| = 2λs

�
Rvac

Rs

�2s+1

� 2λs10−5(2s+1)
< 5× 10

−11
. (9.2)

However for the model (2.9) we have not explicitly written a functional form f(R). There-

fore to apply the bound (9.1) we must first calculate the relationship between M(a) and

fR. Using the a � 1 limit of (2.9), rearranging the expression (2.3) and integrating, we

find
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ā
6ν−4
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In addition, we require the value of the scale factor at which Rcos = Rs � 10
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. Substituting this into (9.3) we find that the solar system

constraint for the model (2.9),
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Modified gravity:
Non-linear regime

• We observe the effect of the chameleon mechanism in the 
mildly non-linear regime

• Can use the mildly non-linear regime to calibrate fully non-
linear fitting formulas. 
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Modified gravity:
Non-linear regime

• Perturbation theory cannot be trusted above 

• Beyond this, we must use alternative approaches (N-body 
simulations,...?)

• The PPF formalism,

• Requires simulations                                                               
to calibrate!

•

k  0.1h Mpc−1

Hu, Sawicki (2007)

Koyama, Taruya, Hiramatsu (2009)
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Modified gravity:
Fisher matrix analysis

• How well can future missions constrain these models? 

• Fisher matrix analysis

• Calculate the shear power spectrum for these models

• Take two cuts in the data

• Conservative                (only consider the linear regime)

• Include nonlinear physics                    (using GR fitting function; used as an indication of 
possible gain due to using the nonlinear regime only!)

• Parameterize the f(R) function as

Euclid
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40 gal/arcmin2
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lcut = 400

lcut ~10000
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A. Laplace Instability

The Laplace instability is determined by combining the (0, 0), trace and (i �= j) Einstein equations with the π
perturbed equation, keeping all terms containing second order time and spatial derivatives of the fields. We find the
following expression for δπ;
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relation between the power spectrum of the metric potentials Pφψ and the matter power

spectrum Pδ [52, 53], which is expressed finally in (5.4).

Weak lensing does face technical challenges in the form of stringent requirements for

shape estimation [54] and intrinsic alignments [55] but the potential power of this method

for dark energy, neutrino masses and testing gravity provides vast motivation for solving

them. We focus on this probe of the matter power spectrum in the next section and

combine it with the CMB after.

6. Future Surveys and their Gravitational Limits

6.1 Weak Lensing: Euclid

We perform a Fisher matrix analysis to calculate expected parameter sensitivity for a future

weak lensing survey: the proposed space-based Euclid mission [56] (see [40, 41] for related

works). While one can undertake a more studious MCMC analysis for this purpose, as in

[41], the Fisher matrix method produces bounds that are essentially equivalent for these

illustrative purposes [41]. Euclid intends to measure galaxies over a sky coverage of 20�000

square degrees with an effective galaxy density of 40 gal/arcmin2. The corresponding Fisher

matrix is given by

Fij =
�

l

∂C

∂pi
Cov−1 ∂C

∂pj
(6.1)

where C is the weak lensing observable

Cij(l) = Pij + �γ2int�
δij
n̄i

. (6.2)

Pij is given in (5.4) with indices denoting tomographic redshift bins, and n̄i is the average

galaxy number per steradian in bin i. The quantity �γ2int�1/2 is the rms intrinsic shear

in each component, which we set to 0.22. ∂C/∂pi is the derivative of the weak lensing

observable with respect to the parameter p being varied. Cov is the covariance matrix

Cov
�
Ck
ij(l), C

k
kl

�
=

δll�

(2l + 1)fsky�l

�
Ck
ik(l)C

k
jl(l) + Ck

il(l)C
k
jk

�
. (6.3)

and fsky is the sky fraction. To model the redshift distribution we use the expression

n(z) ∝ zαexp[−(z/z0)
β ] (6.4)

with z0 = zm/1.412, α = 2, β = 1.5. zm is the median redshift and for a Euclid-like

survey zm = 0.9 [56, 58]. We consider five tomographic redshift bins, chosen such that

there are approximately an equal number of galaxies in each. Finally, to account for the

photometric error we convolve the redshift bins with a Gaussian of width σz = σp(1 + z),

where σp = 0.03.
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Modified gravity:
Forecast constraints
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Modified gravity:
Conclusion

• The expected constraints on f(R) models from future surveys are at least two orders of 
magnitude greater than current cosmological bounds.

• These constraints will be tighter than those obtained from local, solar system tests.

• We must be careful to analyse the nonlinear regime correctly!

• The parameter space must be explored in further detail to determine whether the scalar 
field can roll on cosmological scales.
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