Study of N* in χQM via η productions

Jun He

Institute of Modern Physics, Chinese Academy of Sciences

Apr 12, 2009

▲ □ ▶ ▲ □ ▶ ▲

-

 N^* in η production Extracting information of resonances

Why we study the η production

• N*: Nonperturbative QCD

・ 一 ・ ・ ・ ・ ・ ・

-

 N^* in η production Extracting information of resonances from data Reach the subnucleonic degrees of freedom

Why we study the η production

- N*: Nonperturbative QCD
- The problems about N* spectrum compared with CQM.

イロト イポト イヨト イヨト

 N^* in η production Extracting information of resonances from data Reach the subnucleonic degrees of freedom

Why we study the η production

- N*: Nonperturbative QCD
- The problems about N* spectrum compared with CQM.
- Ways to deepen our understanding of N*
 - Photo-/electroproduction: CLAS,ELSA,MAMI...
 - π N scattering: CB...
 - NN collision: COSY, HPLUS@CSR...
 - J/ψ decay in e^+e^- collision: BES
 -

 N^* in η production Extracting information of resonances from data Reach the subnucleonic degrees of freedom

Why we study the η production

- N*: Nonperturbative QCD
- The problems about N* spectrum compared with CQM.
- Ways to deepen our understanding of N*
- Merit of ηN channel
 - No Δ : $I_{\eta} + I_N \rightarrow 1/2$, no 3/2
 - "η-mesic nuclei"
 - Important *S*₁₁(1535)

Image: A image: A

 N^* in η production Extracting information of resonances from data Reach the subnucleonic degrees of freedom

Why we study the η production

- N*: Nonperturbative QCD
- The problems about N* spectrum compared with CQM.
- Ways to deepen our understanding of N*
- Merit of ηN channel

We will study N* through two η production processes $\gamma p \rightarrow \eta p$ and $\pi^- p \rightarrow \eta n$

 N^* in η production Extracting information of resonances from data Reach the subnucleonic degrees of freedom

Extracting information of resonances from data

Extracting the information of resonances, such as, mass, decay width, from the observables

- SAID
- MAID
- EBAC
- Bonn-Gatchina groups
- Geissen group
-

/∄ ▶ ∢ ∃ ▶

Extracting information of resonances from data

Extracting the information of resonances, such as, mass, decay width, from the observables

- SAID
- MAID
- EBAC
- Bonn-Gatchina groups
- Geissen group
-

Do not reach the subnucleonic degrees of freedom!

 N^* in η production Extracting information of resonances from data Reach the subnucleonic degrees of freedom

Reach the subnucleonic degrees of freedom

Approaches with the subnucleonic degrees of freedom

Introduction N* chiral constituent quark Extr Summery and Outlook Rear

 N^* in η production Extracting information of resonances from data Reach the subnucleonic degrees of freedom

Reach the subnucleonic degrees of freedom

Approaches with the subnucleonic degrees of freedom

- Approaches based on fundamental theory QCD
 - Lattice QCD: great technical difficulties for resonances.
 - QCD sum rule: low energy ones, $\Delta(1232)$, $S_{11}(1535)$

/∎ ► < ≡ ►

 N^* in η production Extracting information of resonances from data Reach the subnucleonic degrees of freedom

Reach the subnucleonic degrees of freedom

Approaches with the subnucleonic degrees of freedom

- Approaches based on fundamental theory QCD
 - Lattice QCD
 - QCD sum rule
- Constituent quark model
 - spectrum: $SU(6) \otimes U(3)$.
 - transition amplitudes: $A_{1/2}$, $A_{3/2}$, $\Gamma_{R \rightarrow MB}$

- **→** → **→**

 N^* in η production Extracting information of resonances from data Reach the subnucleonic degrees of freedom

Reach the subnucleonic degrees of freedom

Approaches with the subnucleonic degrees of freedom

- Approaches based on fundamental theory QCD
 - Lattice QCD
 - QCD sum rule
- Constituent quark model
 - spectrum
 - transition amplitudes

Those approaches did not investigate reaction mechanisms.

< 🗇 > < 🖻 >

Our approach: study of η productions in constituent quark model

Starting Point: effective chiral Lagrangian,

$$\mathcal{L} = \bar{\psi}[\gamma_{\mu}(i\partial^{\mu} + V^{\mu} + \gamma_5 A^{\mu}) - m]\psi + \cdots,$$

where $V^{\mu} = \frac{1}{2} (\xi \partial^{\mu} \xi^{\dagger} + \xi^{\dagger} \partial^{\mu} \xi)$, $A^{\mu} = \frac{1}{2i} (\xi \partial^{\mu} \xi^{\dagger} - \xi^{\dagger} \partial^{\mu} \xi)$ with $\xi = \exp(i\phi_m/f_m)$.

Introduction formalism chiral constituent quark Ingredient Summery and Outlook Results

Our approach: study of η productions in constituent quark model

Starting Point: effective chiral Lagrangian,

$$\mathcal{L} = \bar{\psi}[\gamma_{\mu}(i\partial^{\mu} + V^{\mu} + \gamma_{5}A^{\mu}) - m]\psi + \cdots,$$

where $V^{\mu} = \frac{1}{2} (\xi \partial^{\mu} \xi^{\dagger} + \xi^{\dagger} \partial^{\mu} \xi)$, $A^{\mu} = \frac{1}{2i} (\xi \partial^{\mu} \xi^{\dagger} - \xi^{\dagger} \partial^{\mu} \xi)$ with $\xi = \exp(i\phi_m/f_m)$.

For the pseudoscalar meson productions with the Hamiltonian

$$\mathcal{M}_{fi} = \langle N_f | H_{f,i} | N_i \rangle + \sum_j \left\{ \frac{\langle N_f | H_f | N_j \rangle \langle N_j | H_i | N_i \rangle}{E_i + \omega_i - E_j} + \frac{\langle N_f | H_i | N_j \rangle \langle N_j | H_f | N_i \rangle}{E_i - \omega_j - E_j} \right\} + \mathcal{M}_{\mathcal{T}},$$

formalism Ingredient Results

Formulism: for s-channel

Connect observables with CQM

Jun He Study of N* in χQM via η productions

▲ 同 ▶ → 三 ▶

-

Connect observables with CQM

$$\begin{split} \mathcal{M}_{N^*}^{\gamma} & \to f_{1/\pm} \\ \mathcal{M}_{N^*}^{\gamma} &= \mathit{i} \mathit{f}_{1/\pm} \sigma \cdot \epsilon + \mathit{f}_{2/\pm} \sigma \cdot \hat{\mathbf{q}} \sigma \cdot (\hat{\mathbf{k}} \times \epsilon) + \mathit{i} \mathit{f}_{3/\pm} \sigma \cdot \hat{\mathbf{k}} \hat{\mathbf{q}} \cdot \epsilon + \mathit{i} \mathit{f}_{4/\pm} \sigma \cdot \hat{\mathbf{q}} \epsilon \cdot \hat{\mathbf{q}}, \\ \mathcal{M}_{N^*}^{\eta_*} &= \mathit{f}_{1/\pm} + \sigma \cdot \hat{\mathbf{q}} \sigma \cdot \hat{\mathbf{k}} \mathit{f}_{2/\pm}. \end{split}$$

イロト イポト イヨト イヨト

Connect observables with CQM

 $\mathcal{M}_{N^*}^{\gamma} \rightarrow f_{1/\pm}$

$$\begin{split} f_{1/\pm} & \longrightarrow A_{3/2}^{\gamma}, A_{1/2}^{m} \\ f_{1/\pm} & = f_{0} [\mp A_{1/2}^{\gamma} - \sqrt{\frac{l+1/2 \mp 1/2}{l+1/2 \pm 3/2}} A_{3/2}^{\gamma}] P_{\ell\pm1}^{\prime}, \\ f_{2/\pm} & = f_{0} [\mp A_{1/2}^{\gamma} - \sqrt{\frac{l+1/2 \pm 3/2}{l+1/2 \mp 1/2}} A_{3/2}^{\gamma}] P_{\ell}^{\prime}, \qquad f_{1} & = \sum_{l=0}^{\infty} [f_{l+}P_{l+1}^{\prime} - f_{l-}P_{l-1}^{\prime}], \\ f_{3/\pm} & = \pm f_{0} \frac{2A_{3/2}^{\gamma}}{\sqrt{(l-1/2 \pm 1/2)(l+3/2 \pm 1/2)}} P_{\ell\pm1}^{\prime\prime}, \qquad f_{2} & = \sum_{l=0}^{\infty} [f_{l-} - f_{l+}] P_{l}^{\prime}. \\ f_{4/\pm} & = \mp f_{0} \frac{2A_{3/2}^{\gamma}}{\sqrt{(l-1/2 \pm 1/2)(l+3/2 \pm 1/2)}} P_{\ell}^{\prime\prime}, \\ \text{where } A_{\lambda}^{\gamma} \text{ is the helicity amplitudes and } f_{0} \equiv \frac{1}{(2J+1)2\pi} [\frac{M_{N}E_{N}}{M_{N^{*}}^{N}} k]^{1/2} A_{1/2}^{m} \text{ with } A_{1/2}^{m} \text{ the } N^{*} \rightarrow \eta N \text{ decay amplitude, appearing in the partial decay width} \end{split}$$

Connect observables with CQM

 $\mathcal{M}_{N^*}^{\gamma} \rightarrow f_{1/\pm}$

 $f_{1/\pm} \rightarrow A^{\gamma}_{3/2}, A^m_{1/2}$

 $A_{3/2}^{\gamma}, A_{1/2}^{m} \rightarrow \langle N|H|N^{*} \rangle$

$$\begin{split} \mathbf{A}_{\lambda} &= \sqrt{\frac{2\pi}{k}} \langle \mathbf{N}^*; J\lambda | H_e | \mathbf{N}; \frac{1}{2}\lambda - 1 \rangle, \\ \mathbf{A}_{\nu}^m &= \langle \mathbf{N}; \frac{1}{2}\nu | H_m | \mathbf{N}^*; J\nu \rangle. \end{split}$$

イロト イポト イヨト イヨト

-

Connect observables with CQM

 $\mathcal{M}_{N^*}^{\gamma}
ightarrow f_{1/\pm}$

 $f_{1/\pm} \rightarrow A^{\gamma}_{3/2}, A^m_{1/2}$

 $A_{3/2}^{\gamma}, A_{1/2}^{m} \rightarrow \langle \textit{N} | \textit{H} | \textit{N}^{*} \rangle$

$\langle N|H|N^* \rangle$ in CQM

- Wave function: $|N^*\rangle$ from potential model: OGE, GBE...
- Hamiltonian: H_e, H_m: χQM

イロト イポト イヨト イヨト

Connect observables with CQM

 $\mathcal{M}_{N^*}^{\gamma} \rightarrow f_{1/\pm}$

 $f_{1/\pm} \rightarrow A^{\gamma}_{3/2}, A^m_{1/2}$

 $A_{3/2}^{\gamma}, A_{1/2}^{m} \rightarrow \langle \textit{N} | \textit{H} | \textit{N}^{*} \rangle$

 $\langle N|H|N^* \rangle$ in CQM

Done

Advantage: the breaking of $SU(6) \otimes O(3)$ symmetry is introduced through potential model to avoid a strength parameter (coupling constant) for each resonances

formalism Ingredient Results

Ingredient

Results

Jun He Study of N* in χQM via η productions

chiral constituent guark Summery and Outlook Ingredient

Ingredient

Channels considered

- s-channel
 - n=1: S₁₁(1535), S₁₁(1650), D₁₃(1520), D₁₃(1700), and D₁₅(1675); $n=2: P_{11}(1440), P_{11}(1710), P_{13}(1720),$ $P_{13}(1900), F_{15}(1680), F_{15}(2000), and$ $F_{17}(1990).$ n>2: degenerated New resonances: S₁₁, D₁₃, D₁₅
- u-channel : Degenerated
- t-channel : Neglected

Parmeters: 21

Data

Results

formalism Ingredient Results

Ingredient

Results

Jun He Study of N* in χQM via η productions

(日)

formalism Ingredient Results

Experiments: $d\sigma/d\Omega$ and Σ , T for $\gamma p \rightarrow \eta p$

Exp.	year	Obs.	Angular	P_γ	W	N _{dp}
MAMI	(1994)	$d\sigma/d\Omega$	25-154	0.716-0.790	1.49-1.54	100
CLAS	(2002)	$d\sigma/d\Omega$	45-134	0.775-1.925	1.53-2.12	190
ELSA	(2003)	$d\sigma/d\Omega$	31-138	0.775-2.900	1.53-2.51	631
LNS	(2006)	$d\sigma/d\Omega$	25-154	0.718-1.142	1.49-1.74	180
GRAAL	(2006)	$d\sigma/d\Omega$	31-160	0.714-1.477	1.49-1.91	487
ELSA	(2006)	Σ	50-148	0.843-1.343	1.57-1.84	34
GRAAL	(2006)	Σ	40-160	0.724-1.472	1.50-1.91	150
BONN	(1997)	Т	33-145	0.717-1.105	1.49-1.72	50

イロト イポト イヨト イヨト

formalism Ingredient Results

Experiments: $d\sigma/d\Omega$ for $\pi^- p \rightarrow \eta n$

Ref.	Year	Angular	P_{π}	W	δ_{sys}
Deinet	(1969)	32-123	0.718-1.050	1.51-1.70	11%
Richards	(1970)	26-154	0.718-1.433	1.51-1.90	10% to 14%
Debenham	(1975)	162-172	0.697-0.999	1.49-1.67	10% + 0.02 μ b
Brown	(1975)	18-160	0.724-2.724	1.51-2.45	10% or 0.01 μ b
Prakhov	(2005)	23-157	0.687-0.747	1.49-1.52	6%
Feltesse	(1975)	20-160	0.757	1.53	
Crouch	(1980)	14-167	1.395-3.839	1.88-2.85	
Morrison	(1999)	46-134	0.701-0.747	1.50-1.52	

<ロト <部ト < 注ト < 注ト

з

formalism Ingredient Results

Experiments: $d\sigma/d\Omega$ for $\pi^- p \rightarrow \eta n$

Ref.	Year	Angular	P_{π}	W	δ_{sys}	N _{dp}	N _{dp}
Deinet	(1969)	32-123	0.718-1.050	1.51-1.70	11%	83	80
Richards	(1970)	26-154	0.718-1.433	1.51-1.90	10% to 14%	70	66
Debenham	(1975)	162-172	0.697-0.999	1.49-1.67	10% + 0.02 μ b	111	27
Brown	(1975)	18-160	0.724-2.724	1.51-2.45	10% or 0.01 μ b	379	51
Prakhov	(2005)	23-157	0.687-0.747	1.49-1.52	6%	84	70
Feltesse	(1975)	20-160	0.757	1.53		16	-
Crouch	(1980)	14-167	1.395-3.839	1.88-2.85		731	-
Morrison	(1999)	46-134	0.701-0.747	1.50-1.52		34	-

<ロト <部ト < 注ト < 注ト

з

formalism Ingredient Results

Ingredient

formalism Ingredient Results

Ingredient

-

formalism Ingredient Results

Ingredient

Results

 $\chi^2 = \sum \frac{(V_{th} - V_{ex})^2}{(E_{ex}^V)^2 + (V_{th}' E_{ex}^E)^2}.$ Here V_{th} , $V_{ex} E_{ex}^V$ and E_{ex}^E are the values from theoretical calculation and experiment and the uncertainty of observable and energy, and V_{th}' are the derivative of observable with energy.

・ロン ・団 と ・ ヨン ・ ヨン …

formalism Ingredient Results

Ingredient

formalism Ingredient Results

Spectrum

formalism Ingredient Results

Results: σ for $\gamma p \rightarrow \eta p$

formalism Ingredient Results

Results: $d\sigma/d\Omega$ and Σ for $\overline{\gamma p \rightarrow \eta p}$

Study of N* in χQM via η productions

з

Jun He

formalism Ingredient Results

Results: σ for $\pi^- p \rightarrow \eta n$

Jun He Study of N* in χQM via η productions

formalism Ingredient Results

Results: $d\sigma/d\Omega$ for $\pi^- p \rightarrow \eta n$

イロト イポト イヨト イヨト

formalism Ingredient Results

Results: Helicity amplitudes and decay widths

Resonances	A _{1/2}	$A_{1/2}^{PDG}$	A _{3/2}	$A_{3/2}^{PDG}$	$\sigma \sqrt{\Gamma_{\eta N}}$	$(\sigma)\sqrt{\Gamma_{\eta N}^{PDG}}$	$\sqrt{\Gamma_{\pi N}}$	$\sqrt{\Gamma_{\pi N}^{PDG}}$
S ₁₁ (1535)	73	90 ± 30			7.18	$8.87^{+1.37}_{-1.37}$	6.78	$8.22^{+1.59}_{-1.60}$
$S_{11}(1650)$	66	53 ± 16			-2.42	$1.95^{+0.94}_{-1.57}$	8.85	$11.31^{+1.95}_{-1.98}$
$P_{11}(1440)$	-23	-65 \pm 4			-2.42		17.16	$13.96^{+4.41}_{-3.48}$
$P_{11}(1710)$	-53	9 ± 22			-1.05	$2.49^{+1.75}_{-0.88}$	4.12	$3.87^{+3.20}_{-1.64}$
P ₁₁	18				-2.79		6.59	
P ₁₁	3				-1.20		4.51	$5.34^{+2.16}_{-2.16}$
$P_{13}(1720)$	177	18 ± 30	-69	-19 \pm 20	2.91	$2.83^{+1.04}_{-0.71}$	20.15	$5.48^{+2.27}_{-1.60}$
$P_{13}(1900)$	30		2		-1.33	$8.35^{+2.11}_{-2.20}$	11.02	$11.38^{+2.20}_{-2.21}$
P ₁₃	28		0		2.44		3.06	
P ₁₃	12		2		0.03		5.54	
P ₁₃	-3		3		-1.01		3.12	
$D_{13}(1520)$	-7	-24 ± 9	158	166 ± 5	0.44	$0.51\substack{+0.07 \\ -0.06}$	14.77	$8.31^{+0.71}_{-0.53}$
$D_{13}(1700)$	-4	$\textbf{-18}\pm\textbf{13}$	4	-2 ± 24	-0.81	$0.00^{+1.22}_{-0.00}$	4.92	$3.16^{+1.58}_{-1.58}$
$D_{15}(1675)$	-6	19 ± 8	-8	15 ± 9	-2.50	$0.00^{+1.28}_{-0.00}$	7.59	$7.75^{+0.87}_{-1.00}$
$F_{15}(1680)$	24	-15 \pm 6	136	133 ± 12	0.58	$0.00^{+1.18}_{-0.00}$	13.71	$9.37^{+0.53}_{-0.54}$
F ₁₅	-9		4		0.97		0.35	
$F_{15}(2000)$	-1		10		-0.47		3.60	$4.00^{+6.20}_{-2.18}$
$F_{17}(1990)$	5	1	6	4	-1.55	$0.00\substack{+2.17 \\ -0.00}$	6.84	$4.58^{+1.55}_{-1.55}$

・ロン ・部 と ・ ヨ と ・ ヨ と …

Conclusion

- Study of η productions in quark level (CQM).
- Study of "missing" resonances in η productions directly in CQM.
- Study of spectrum and observables simultaneously in CQM.
- For known resonances:
 - Both : $S_{11}(1535), S_{11}(1650), D_{13}(1520), F_{15}(1680), P_{13}(1720)$
 - $\pi^- p \rightarrow \eta n$: $P_{11}(1440)$, $D_{15}(1675)$
- For "missing" resonances:
 - Both : Negligible
- For New resonances:
 - $\gamma \quad p \rightarrow \eta p$: New $S_{11}(1715)$ and $D_{15}(2090)$
- For $\pi^- p \rightarrow \eta n$
 - P₁₃(1720) : second bump for the cross section
 - Near threshold: Large $d(d\sigma/d\Omega)/dE \rightarrow \Delta E$ is more important!