

$e^-e^+ \rightarrow \overline{N}N$ at Threshold and Proton Form Factor

Y. Yan, K. Khosonthongkee, C. Kobdaj, P. Suebka

School of Physics, Suranaree University of Technology, Nakhon Ratchasima, Thailand

2 / 18

- Data of $e^-e^+ \rightarrow \overline{N}N$ at Threshold
- One-Step Process
- Two-Step Process with $\rho(2000)$ and $\omega(1900)$
- Two-Step Process with $\rho(2000)\text{, }\omega(1900)$ and $\rho(1700)$

Remarks

Data of $e^-e^+ \rightarrow \overline{N}N$ at Threshold

Data of $e^-e^+ \rightarrow \overline{N}N$ Cross Sections

School of Physics (SUT)

Data of $e^-e^+ \rightarrow \overline{N}N$ Cross Sections

• The combined data at threshold indicate that

$$\frac{\sigma(e^+e^- \to \overline{p}p)}{\sigma(e^+e^- \to \overline{n}n)} < 1 \tag{1}$$

• It is puzzling!

• We expect that the u quark contribution dominates in the proton and the d quark in the neutron, so that

$$\frac{\sigma(e^+e^- \to \overline{p}p)}{\sigma(e^+e^- \to \overline{n}n)} \gg 1$$
(2)

at large momentum transfers.

4 / 18

One-step process in which the primary $\overline{q}q$ pair is directly dressed by additional $\overline{q}q$ pairs to form a hadron pair,

Transition amplitude

$$T_{e^+e^- \to \overline{N}N} = \langle \overline{N}N | V_{^3P_0} | \overline{q}q \rangle \langle \overline{q}q | T | e^+e^- \rangle$$
(3)

 ${}^{3}P_{0}$ Vertex: $V_{{}^{3}P_{0}}=V_{25}V_{34}$ with

$$V_{ij} = \lambda \,\vec{\sigma}_{ij} \cdot (\vec{p}_i - \vec{p}_j) \,\hat{F}_{ij} \,\hat{C}_{ij} \,\delta(\vec{p}_i + \vec{p}_j) \tag{4}$$

- $\vec{p_i}$ and $\vec{p_j}$ are the momenta of quark and antiquark created out of the vacuum;
- Spin Operator: $\vec{\sigma}_{ij} = (\vec{\sigma}_i + \vec{\sigma}_j)/2$;
- Flavor and Color Operators: \hat{F}_{ij} and \hat{C}_{ij} , projecting a quark-antiquark pair to the respective vacuum quantum numbers.

٩

One-Step Process in ${}^{3}P_{0}$ Model

- Radial wave function of nucleons takes the Gaussian form with size parameters a_{ρ(λ)} = 1.5 ~ 2.0 GeV⁻¹, see PRD34.2809, D47.1994, D75.094017
- $a_{\rho(\lambda)} = 1.5 \sim 2.0 \text{ GeV}^{-1}$ corresponds to a nucleon radius $R = 0.3 \sim 0.4 \text{ fm}.$
- At E_{cm} around 2 GeV the ${}^{3}P_{0}$ model gives

$$\frac{\sigma(e^+e^- \to \overline{p}p)}{\sigma(e^+e^- \to \overline{n}n)} \approx 3$$
(5)

• The one-step process can NOT be dominant for $e^+e^- \rightarrow \overline{N}N$ at threshold in the 3P_0 model.

7 / 18

Two-step process in which the primary $\overline{q}q$ pair forms first a vector meson which in turn decays into a hadron pair,

$$T_{e^+e^- \to \overline{N}N} = \langle \overline{N}N | V_{^3P_0} | \rho^* \rangle \langle \rho^* | G | \rho^* \rangle \langle \rho^* | \overline{q}q \rangle \langle \overline{q}q | T | e^+e^- \rangle$$
³P₀ Vertex: $V_{^3P_0} = V_{^25} \frac{1}{1-7} V_{^24}$

School of Physics (SUT)

- 1/ΔE, accounting for the energy propagation between the two qq̄ vertices, is simply set by associating an equal share of Ecm to each valence quark (PLB331.8, PLB354.24, PRD71.025204);
- Radial wave function of nucleon takes the Gaussian form with the size parameter $a=2.0~{\rm GeV^{-1}}$
- Radial wave function of intermediate mesons takes the Gaussian form with the size parameter b fixed to be 3.85 GeV⁻¹ by the process $\rho \rightarrow e^-e^+$
- $\lambda_{25}=1.0$, the one for $ho
 ightarrow \pi\pi$;
- $\lambda_{34} = 2.6$ (arguable!), the one for $\Sigma(1385) \rightarrow \Lambda \pi$.

Candidates of Intermediate Mesons

- $\rho(2000) \ (\Gamma = 300 \text{ MeV})$ taken from NPA662.319(2000);
- $\omega(1930)$ ($\Gamma = 150$ MeV) taken from PLB507.23(2001);
- Data of $e^-e^+ \rightarrow \pi \omega$ indicate that $\rho(1425)$ and $\rho(1700)$ are dominantly 2S and 1D states, respectively.

Two-Step Process in ${}^{3}P_{0}$ Model $e^{-}e^{+} \rightarrow \pi \omega$ in ${}^{3}P_{0}$ Model

 $e^-e^+ \rightarrow \pi \omega$ in 3P_0 Model with ρ , $\rho(1450)$ and $\rho(1700)$ (PRC79.025201)

School of Physics (SUT)

NSTAR2009 April 19-22, 2009

 $\rightarrow \overline{n}n(\overline{n}n)$ with 3S $\rho(2000)$ and 2D $\omega(1900)$

$\sigma_{e^-e^+ ightarrow \overline{p}p(\overline{n}n)}$ with 3S~ ho(2000) and $2D~\omega(1930)$

 $\omega = (- \omega + \omega + \omega + \omega)$ with $\rho(2000)$, $\omega(1930)$ and $\rho(1700)$

 $\sigma_{e^-e^+\to\overline{p}p\,(\overline{n}n)}$ with $3S~\rho(2000),~2D~\omega(1930)$ and $1D~\rho(1700)$

School of Physics (SUT)

with $\rho(2000), \, \omega(1930)$ and $\rho(1700)$

 $\sigma_{e^-e^+ \to \overline{p}p(\overline{n}n)}$ with $3S(50\%) + 2D(50\%) \ \rho(2000), \ 2D = \omega(1930)$ and $1D \ \rho(1700)$

Two-Step Process in ${}^{3}P_{0}$ Model Proton ef

Proton effective form factor

Proton effective form factor with $3S(50\%) + 2D(50\%) \cong \rho(2000)$, $2D \ \omega(1930)$ and $1D \ \rho(1700)$

School of Physics (SUT)

NSTAR2009 April 19-22, 2009

Discussion and Conclusions

- The reactions $e^+e^- \rightarrow \overline{N}N$ are studied in the 3P_0 non-perturbative quark model. The results are promising;
- The work suggests that the two-step process is dominant over the one-step one;
- A $D\text{-wave }\omega(1930)$ is strongly favored by experimental data;
- $\rho(2000)$ might be a mixture of S and D waves.

17 / <u>18</u>

Acknowledgements

• NSTAR2009 Organizers

- Commission on Higher Education, Thailand (CHE-RES-RG Theoretical Physics)
- SUT Conference Fund

18 / 18