Workshop on the Physics of Excited Nucleon -NSTAR2009-

A new N* resonance as a hadronic molecular state

D. Jido (Yukawa Institute, Kyoto)

collaboration with

N*

Y. Kanada-En'yo (YITP, Kyoto)

new N* resonance at around 1910 MeV

20~40 MeV blow KK^{bar}N threshold (1930 MeV)

hadronic molecular state

Kaons are constituents

References

D. Jido and Y. Kanada-En'yo, Phys. Rev. C78, 035203 (2008)

See also for Ξ^* : Y. Kanada-En'yo and D. Jido, **Phys. Rev. C78**, **025212** (2008)

D. Jído

Institute of High Energy Physics, CAS, Beijing, China

Introduction

So far, the structure of baryons has been investigated in quark models.

symmetries of quarks play a major role

shell model picture

Baryon resonances : decay with strong interactions

large meson-baryon components

meson-baryon dynamics is also important

cluster picture

- inter-hadron distance is larger than quark dynamics
- difference in range of dynamics

What is hadronic molecular state ?

- system of multiple hadrons described by hadron dynamics

typical constituents are ground states hadrons

octet meson: π, \tilde{K} , η octet baryons: N, Λ, Σ, Ξ

What is hadronic molecular state ?

- weakly bound system with large width

typical binding energy ~ 10-30 MeV

decay width ~ 50 MeV (strong interactions)

quasi-bound state

- constituents keep their identity

spatially extended (large size) typically more than I fm

- fragile system

softer form factors strong energy dependence in production

quark degrees of freedom may be less important

D. Jído

Peculiarities of K meson

small binding energy ~ 10-30 MeV small kinetic energy • heavy particle compared with kinetic energy half of nucleon mass cf. pion $m_{\pi} \approx 140$ MeV non-relativisitc potential model isospin averaged mass $m_{K} = 495.7$ MeV $m_{N} = 938.9$ MeV

- Nambu-Goldstone boson

smaller mass compared with typical hadron mass scale

strong s-wave attraction in K^{bar}N

chiral effective theory momentum expansion

s-wave int. proportional to K energy

Kaons are different from pions in the energies of our interest !!

$K\bar{K}N$ system with I=1/2, J^P=1/2⁺

simplest multi-kaon baryonic system:

assumption

non-relativistic treatment of kaons

 $\Lambda(1405)$ is a quasi-bound state of $K^{bar}N$

 $f_0(980)$ and $a_0(980)$ are quasi-bound states of KK^{bar}

s-wave

Binging energy is important for "fate" of hadronic molecular state

A) 3-body System > 2-body BS + hadron

fall apart, large width

B) 3-body BS < 2-body BS + hadron

quasi-stable

C) 3-body BS << 2-body BS + hadron

molecular picture broken down large width of two-body decay \rightarrow different approaches are necessary

3-body \rightarrow 2-body

Two-body interactions

Formulation for three-body system

non-relativistic potential model

Hamiltonian

$H = T + V_{\bar{K}N}(r_1) + V_{KN}(r_2) + V_{K\bar{K}}(r_3),$ two-body effective interactions **local potentials** obtained by s-wave two-body scattering Gaussian potential $V(r) = U \exp \left[-(r/b)^2\right]$ complex potentials to implement coupled-channels effects ex: $\bar{K}N \to \pi\Sigma$ no three-body interactions no transitions to two hadrons $\bar{K}\bar{K}N \rightarrow MB$ will be suppressed in hadronic molecular states

recipe

- solve Schrödinger eq. without imaginary potential in variational method st : obtain wavefunction Ψ and real part of energy
- 2nd: estimate imaginary part of energy $E^{Im} = \langle \Psi | Im V | \Psi \rangle$.

Effective interactions

Gaussian potential $V(r) = U \exp \left[-(r/b)^2\right]$

 $\overline{K}N$ HW-HNJH and AY potentials **attractive** binding energy : II MeV (HW), 31MeV (AY) K^{bar}-N distance : **I.9 fm** (HW), **I.4 fm** (AY)

reproduce masses and widths of f_0 and a_0

attractive mass: 980 MeV, width: 60 MeV reproduced binding energy : 11 MeV

V PDG

mass: 980±10 MeV width: 40~100 MeV mass: 984±1.2 MeV width: 50~100 MeV

KN reproduce scattering lengths repulsive experimental data $a_{KN}^{I=0} = -0.035 \text{ fm}$ $a_{KN}^{I=1} = -0.310 \pm 0.003 \text{ fm}$

K-K^{bar} distance : **2.1 fm**

D. Jído

KK

Results of KK^{bar}N system

N* at 1910 MeV

DJ, Y. Kanada-En'yo, **PRC78, 035203 (2008)**

KKN is bound blow thresholds of $\Lambda(1405)+K$, $a_0(f_0)+N$

10

NSTAR2009@Beijing

spatial structure

r.m.s radius: **I.7 fm** cf. I.4 fm for ⁴He

mean hadron density: **0.07 hadrons/fm³**

hadron-hadron distances are comparable with nucleon-nucleon distances in nuclei

 coexistence of two quasi-bound states keeping their characters

$$\Lambda(1405)+K$$
 a₀(980)+N

- main decay modes

- $\pi \Sigma K$ from Λ (1405)
- $\pi\eta N$ from a₀(980)

Two-body decay of N* possible two-body decay modes based on geometrical argument $(K\bar{K}N) \rightarrow \pi N, \ \eta N, \ K\Lambda, \ K\Sigma$

radius of system ~ 1.7 fm spatially extended

two-body decays are strongly suppressed

- (a) contact interaction
 - three particles at a point \rightarrow (density)²
 - suppose radius of typical quark-model-like resonance to be 0.8 fm
 - suppression factor: (0.8 fm/ 1.7 fm)⁶ ~ 0.01
- (b) virtual meson exchanges
 - two-body decays without meson-exchange is impossible due to energy conservation.
 - two-body transitions
 - suppression factor: $(0.8 \text{ fm}/1.7 \text{ fm})^3 \sim 0.1$
 - finite range of virtual meson exchange

there is further suppression

D. Jído

$\bar{K}\bar{K}N$ system with I=1/2, J^P=1/2⁺ Ξ^*

Once $\Lambda(1405)$ forms in a K^{bar}N system with I=0, another K^{bar} and N has dominantly I=I component, which is weak attraction. This is not enough to overcome the repulsive K^{bar}K^{bar} interaction.

very weak binding binding energy ~ 2 MeV

Y. Kanada-En'yo, DJ, **PRC78, 025212 (2008)**

Summary

hadronic molecular state

- system of multiple hadrons described by hadron dynamics
- weakly bound and spatially extended system

Λ (1405), f₀(980), a₀(980)

explore possibilities for three-body HMS

- non-relativistic potential model
- KK^{bar}N system as N*(1910)

binding energy : 20~40 MeV, width : 90~100 MeV radius : 1.7 fm interhadron distance : ~ 2 fm

keeping properties of the subsystems

- main decay modes

 $\begin{array}{ll} \pi \Sigma K & \mbox{from } \Lambda (1405) \\ \pi \eta N & \mbox{from } a_0 (980) \\ \eta N & \mbox{small two-body decay} \end{array}$

Double pole structute of $\Lambda(1405)$

DJ, Oller, Oset, Ramos, Meissner NPA725, 181 ('03)

$\Lambda(1405)$ is a superposition of two states.

Implication of double pole structure

 $\Lambda(1405)$ spectrum is dependent on channels

Resonance position in K^{bar}N channel ~1420 MeV with narrower width

not 1405 MeV

This 15 MeV difference is important for K^{bar}N interactions

Double pole structure of $\Lambda(1405)$

DJ, Oller, Oset, Ramos, Meissner, NPA725, 181 ('03)

Λ(1405) is a superposition of two states having different properties.

two attractive channels: $K^{bar}N$ and $\pi\Sigma$

Hyodo, Weise, PRC77, 035204 ('08)

essentially, pole 1: $\pi\Sigma$ resonance, pole 2: KbarN bound state

D. Jído

Subthreshold properties of K^{bar}N

DJ, Oset, Sekihara, in progress

 $\Lambda(1405)$ spectra in K^{bar}N channel $\bar{K}N \rightarrow \Lambda(1405)$

 $K^- d \to \Lambda(1405)n$

Braun et al. NPB129, 1, ('77) bubble chamber $\kappa^{-}d \rightarrow \Sigma^{-}\pi^{+}n$

Structure of Baryon Resonances

Baryon resonances : decay with strong interactions

in understanding the structure of baryon resonances

cluster picture

shell model picture

- difference in range of dynamics
 meson cloud effects

Effective interactions

$KN \qquad V_{\bar{K}N} = U_{\bar{K}N}^{I=0} \exp\left[-(r/b)^2\right] + U_{\bar{K}N}^{I=1} \exp\left[-(r/b)^2\right]$

Hyodo-Weise potential (HW-HNJH)

derived from chiral unitary approach energy dependent, but small in energy of interest resonance position ~ 1420 MeV (double pole structure) interaction range b= 0.47 fm

Akaishi-Yamazaki potential (AY)

PRC64,044005 (02)

PRC77,035204 (08)

obtained phenomenologically

I=0 : reproduce Λ(I405) as quasi-bound state of K^{bar}N mass: I405 MeV, width: 40 MeV

I=I: scattering and Konic atom data

interaction range b= 0.66 fm

Λ(1405) as Quasi-bound state of K^{bar}N

 $\Lambda(1405)$ $J^{\pi} = 1/2^{-}, I = 0, S = -1, Q = 0$

- most established resonance, seen in many exp. clearly

- mass : 1406.5 ± 4.0 MeV, (below K^-p threshold)
- width : 50 ± 2 MeV (PDG)

- decay mode $\Lambda(1405) \rightarrow (\Sigma \pi)_{I=0}$ 100 % S-wave

$\Lambda(1405)$ has mostly meson-baryon components.