\wedge resonances studied in $K^{-} p \rightarrow \pi^{0} \Sigma^{0}$ near threshold in a chiral quark model

Xian-Hui Zhong
Department of Physics, Hunan Normal University

Collaboration with Qiang Zhao

NSTAR2009, Beijing, April 19-22, 2009.

Outline

1. Motivation
2. The chiral quark model
3. The role of \wedge resonances in the reaction
4. Conclusions

1. Motivation

- There are puzzles for the \wedge resonances. For example, are the $\wedge(1405)$, $\Lambda(1670)$ three quark states?* or multi-quark structures? ${ }^{\dagger}$
- The $K^{-} p \rightarrow \Sigma^{0} \pi^{0}$ gives us a rather clean channel to study the \wedge resonances, for there are no isospin-1 baryons contributing here.
- The recent higher precise data of the reaction $K^{-} p \rightarrow \Sigma^{0} \pi^{0}$ at eight momentum beams between 514 and $750 \mathrm{MeV} / \mathrm{c}$ were reported, which provides us a good opportunity to study the properties of these low-lying \wedge resonances. \ddagger.
- The chiral quark model has been used to study the $\pi^{-} p \rightarrow \eta n$ successfully, which also can be extended to analyze the $K^{-} p \rightarrow \Sigma^{0} \pi^{0} . \S$
*Isgur and Karl,PRD 18, 4187 (1978)
†Oset and Ramos, NPA 635, 99 (1998); Oller and Meissner,PLB 500, 263 (2001)
\ddagger R. Manweiler et al., PRC 77, 015205 (2008)
§Zhong, Zhao, He and Saghai, PRC 76, 065205 (2007)

2. The chiral quark model

- The quark-meson couplings
- The transition amplitudes
- Separation of the resonance contributions

The quark-meson couplings

- At the leading order of the chiral Lagrangian, the quark-meson coupling is given by ${ }^{\text {a }}$

$$
\begin{equation*}
H_{m}=\sum_{j} \frac{1}{f_{m}} \bar{\psi}_{j} \gamma_{\mu}^{j} \gamma_{5}^{j} \psi_{j} \vec{\tau} \cdot \partial^{\mu} \vec{\phi}_{m} . \tag{1}
\end{equation*}
$$

where ψ_{j} represents the j-th quark field in a hadron, the ϕ_{m} stands for the pseudoscalar-meson octet in the $\mathrm{SU}(3)$ case.

- The non-relativistic form of Eq.(1) can be written as
$H_{m}^{n r}=\sum_{j}\left\{\frac{\omega_{m}}{E_{f}+M_{f}} \sigma_{j} \cdot \mathbf{P}_{f}+\frac{\omega_{m}}{E_{i}+M_{i}} \sigma_{j} \cdot \mathbf{P}_{i}-\sigma_{j} \cdot \mathbf{q}+\frac{\omega_{m}}{2 \mu_{q}} \sigma_{j} \cdot \mathbf{p}_{j}^{\prime}\right\} I_{j} \varphi_{m}$,
where $\mathbf{P}_{i}, \mathbf{P}_{f}$ are the three-vector momenta of the initial and final baryons, respectively. The ω_{m} and \mathbf{q} are the energy and three-vector momentum of the light meson, respectively. \mathbf{p}_{j}^{\prime} is the internal momentum for the j-th quark in the initial meson rest frame. σ_{j} corresponds to the Pauli spin vector of the
${ }^{\text {I Z Z. P. Li, H. X. Ye and M. H. Lu,PRC 56, }} 1099$ (1997);Q. Zhao, J. S. Al-Khalili, Z. P. Li and R. L. Workman, PRC 65, 065204 (2002)
j-th quark in a baryon. The isospin operator I_{j} in Eq. (2) is expressed as

$$
I_{j}= \begin{cases}a_{j}^{\dagger}(u) a_{j}(s) & \text { for } K^{+} \tag{3}\\ a_{j}^{\dagger}(s) a_{j}(u) & \text { for } K^{-} \\ a_{j}^{\dagger}(d) a_{j}(s) & \text { for } K^{0} \\ a_{j}^{\dagger}(s) a_{j}(d) & \text { for } \bar{K}^{0} \\ a_{j}^{\dagger}(u) a_{j}(d) & \text { for } \pi^{+} \\ a_{j}^{\dagger}(d) a_{j}(u) & \text { for } \pi^{-} \\ \frac{1}{\sqrt{2}}\left[a_{j}^{\dagger}(u) a_{j}(u)-a_{j}^{\dagger}(d) a_{j}(d)\right] & \text { for } \pi^{0}\end{cases}
$$

where $a_{j}^{\dagger}(u, d, s)$ and $a_{j}(u, d, s)$ are the creation and annihilation operators for the u, d and s quarks.

The transition amplitudes

- The Feynman diagrams for the $K^{-} p \rightarrow \Sigma^{0} \pi^{0}$ reaction :

The s-channel amplitudes

- The s-channel amplitudes can be expressed as

$$
\begin{equation*}
\mathcal{M}_{s}=\sum_{j}\left\langle N_{f}\right| H_{\pi}\left|N_{j}\right\rangle\left\langle N_{j}\right| \frac{1}{E_{i}+\omega_{K}-E_{j}} H_{K}\left|N_{i}\right\rangle, \tag{4}
\end{equation*}
$$

one can then express the s-channel amplitudes by operator expansions:

$$
\begin{equation*}
\mathcal{M}_{s}=\sum_{j}\left\langle N_{f}\right| H_{\pi}\left|N_{j}\right\rangle\left\langle N_{j}\right| \sum_{n} \frac{1}{\omega_{K}^{n+1}}\left(\widehat{H}-E_{i}\right)^{n} H_{K}\left|N_{i}\right\rangle, \tag{5}
\end{equation*}
$$

where n is the principle harmonic oscillator quantum number. Note that for any operator $\widehat{\mathcal{O}}$, one has

$$
\begin{equation*}
\left(\widehat{H}-E_{i}\right) \widehat{\mathcal{O}}\left|N_{i}\right\rangle=[\hat{H}, \widehat{\mathcal{O}}]\left|N_{i}\right\rangle \tag{6}
\end{equation*}
$$

a systematic expansion of the commutator between the NRCQM Hamiltonian \hat{H} and the vertex coupling H_{K} and H_{π} can thus be carried out. Details of this treatment can be found in Refs $\|$.

IIZ. P. Li, PRD 48, 3070 (1993); 50, 5639 (1994); 52, 4961 (1995); C 52, 1648 (1995)

- The s-channel amplitude in the harmonic oscillator basis is expressed as

$$
\begin{equation*}
\mathcal{M}^{s}=\sum_{n}\left(\mathcal{M}_{3}^{s}+\mathcal{M}_{2}^{s}\right) e^{-\left(\mathbf{k}^{2}+\mathbf{q}^{2}\right) / 6 \alpha^{2}} \tag{7}
\end{equation*}
$$

where α is the oscillator strength, and $e^{-\left(\mathbf{k}^{2}+\mathbf{q}^{2}\right) / 6 \alpha^{2}}$ is a form factor in the harmonic oscillator basis. $\mathcal{M}_{3}^{s}\left(\mathcal{M}_{2}^{s}\right)$ corresponds to the amplitudes for the outgoing meson and incoming meson absorbed and emitted by the same quark (different quarks). Because of the isospin selection rule, the π and K^{-} can not couple to the same quark. Thus, the contribution of \mathcal{M}_{3}^{s} vanishes and only \mathcal{M}_{2}^{s} contributes to the s-channel.

- The transition amplitude is

$$
\begin{align*}
\mathcal{M}_{s}= & \left\{g_{s 2} \mathbf{A}_{\text {out }} \cdot \mathbf{A}_{\text {in }} \sum_{n=0}(-2)^{-n} \frac{F_{s}(n)}{n!} \mathcal{X}^{n}\right. \\
& +g_{s 2}\left(-\frac{\omega_{K}}{6 \mu_{q}} \mathbf{A}_{\text {out }} \cdot \mathbf{q}-\frac{\omega_{\pi}}{3 m_{q}} \mathbf{A}_{\text {in }} \cdot \mathbf{k}+\frac{\omega_{\pi}}{m_{q}} \frac{\omega_{K}}{2 \mu_{q}} \frac{\alpha^{2}}{3}\right) \\
& \times \sum_{n=1}(-2)^{-n} \frac{F_{s}(n)}{(n-1)!} \mathcal{X}^{n-1}+g_{s 2} \frac{\omega_{\pi} \omega_{K}}{18 m_{q} \mu_{q}} \mathbf{k} \cdot \mathbf{q} \\
& \sum_{n=2} \frac{F_{s}(n)}{(n-2)!}(-2)^{-n} \mathcal{X}^{n-2}+g_{v 2} i \sigma \cdot\left(\mathbf{A}_{\text {out }} \times \mathbf{A}_{\text {in }}\right) \\
& \sum_{n=0}(-2)^{-n} \frac{F_{s}(n)}{n!} \mathcal{X}^{n}+g_{v 2} \frac{\omega_{\pi} \omega_{K}}{18 m_{q} \mu_{q}} i \sigma \cdot(\mathbf{q} \times \mathbf{k}) \\
& \left.\times \sum_{n=2}(-2)^{-n} \frac{F_{s}(n)}{(n-2)!} \mathcal{X}^{n-2}\right\} e^{-\left(\mathbf{k}^{2}+\mathbf{q}^{2}\right) / \sigma \alpha^{2}} \tag{8}
\end{align*}
$$

We have defined

$$
\begin{gather*}
\mathbf{A}_{\text {in }} \equiv-\left(1+\omega_{K} \mathcal{K}_{i}-\frac{\omega_{K}}{6 \mu_{q}}\right) \mathbf{k} \tag{9}\\
\mathbf{A}_{\text {out }} \equiv-\left(1+\omega_{\pi} \mathcal{K}_{f}-\frac{\omega_{\pi}}{3 m_{q}}\right) \mathbf{q} \tag{10}\\
\mathcal{K}_{i} \tag{11}\\
\mathcal{K}_{f} \tag{12}\\
\equiv 1 /\left(E_{i}+M_{i}\right) \tag{13}\\
\mathcal{X} \tag{14}\\
\equiv \frac{\mathbf{k} \cdot \mathbf{q}}{3 \alpha^{2}} \\
F_{s}(n)
\end{gather*} \begin{aligned}
& M_{n} \\
& P_{i} \cdot k-n M_{n} \omega_{h}
\end{aligned},
$$

- the g-factors, $g_{s 2}$ and $g_{v 2}$, in the s-channel are defined as

$$
\begin{align*}
g_{s 2} & \equiv\left\langle N_{f}\right| \sum_{i \neq j} I_{i}^{\pi} I_{j}^{K} \sigma_{i} \cdot \sigma_{j}\left|N_{i}\right\rangle / 3 \tag{15}\\
g_{v 2} & \equiv\left\langle N_{f}\right| \sum_{i \neq j} I_{i}^{\pi} I_{j}^{K}\left(\sigma_{i} \times \sigma_{j}\right)_{z}\left|N_{i}\right\rangle / 2 \tag{16}
\end{align*}
$$

which can be derived from the quark model in the $S U(6) \otimes O(3)$ limit.

The u-channel amplitudes

- Following the same procedure in the s-channel, we obtain the amplitude for the u-channel is expressed as

$$
\begin{align*}
\mathcal{M}_{u}= & -\left\{\mathbf{B}_{\text {in }} \cdot \mathbf{B}_{\text {out }} \sum_{n=0}\left[g_{s 1}^{u}+(-2)^{-n} g_{s 2}^{u}\right] \frac{F_{u}(n)}{n!} \mathcal{X}^{n}\right. \\
& +\left(-\frac{\omega_{\pi}}{3 m_{q}} \mathbf{B}_{\text {in }} \cdot \mathbf{k}-\frac{\omega_{K}}{3 m_{q}} \mathbf{B}_{\text {out }} \cdot \mathbf{q}+\frac{\omega_{K}}{2 \mu_{q}} \frac{\omega_{\pi}}{m_{q}} \frac{\alpha^{2}}{3}\right) \\
& \times \sum_{n=1}\left[g_{s 1}^{u}+(-2)^{-n} g_{s 2}^{u}\right] \frac{F_{u}(n)}{(n-1)!} \mathcal{X}^{n-1} \\
& +\frac{\omega_{\pi} \omega_{K}}{18 m_{q} \mu_{q}} \mathbf{k} \cdot \mathbf{q} \sum_{n=2} \frac{F_{u}(n)}{(n-2)!}\left[g_{s 1}^{u}+(-2)^{-n} g_{s 2}^{u}\right] \mathcal{X}^{n-2} \\
& +i \sigma \cdot\left(\mathbf{B}_{\text {in }} \times \mathbf{B}_{\text {out }}\right) \sum_{n=0}\left[g_{v 1}^{u}+(-2)^{-n} g_{v 2}^{u}\right] \frac{F_{u}(n)}{n!} \mathcal{X}^{n} \\
& -\frac{\omega_{\pi} \omega_{K}}{18 m_{q} \mu_{q}} i \sigma \cdot(\mathbf{q} \times \mathbf{k}) \sum_{n=2}\left[g_{v 1}^{u}+(-2)^{-n} g_{v 2}^{u}\right] \\
& \times \frac{F_{u}(n)}{(n-2)!} \mathcal{X}^{n-2}+i \sigma \cdot\left[-\frac{\omega_{\pi}}{3 m_{q}}\left(\mathbf{B}_{i n} \times \mathbf{k}\right)-\frac{\omega_{K}}{6 \mu_{q}}\left(\mathbf{q} \times \mathbf{B}_{\text {out }}\right)\right] \\
& \left.\sum_{n=1}\left[g_{v 1}^{u}+(-2)^{-n} g_{v 2}^{u}\right] \mathcal{X}^{n-1} \frac{F_{u}(n)}{(n-1)!}\right\} \times e^{-\left(\mathbf{k}^{2}+\mathbf{q}^{2}\right) / 6 \alpha^{2}}, \tag{17}
\end{align*}
$$

- The g factors in the u-channel are determined by

$$
\begin{align*}
g_{s 1}^{u} & \equiv\left\langle N_{f}\right| \sum_{j} I_{j}^{K} I_{j}^{\pi}\left|N_{i}\right\rangle, \tag{18}\\
g_{s 2}^{u} & \equiv\left\langle N_{f}\right| \sum_{i \neq j} I_{i}^{K} I_{j}^{\pi} \sigma_{i} \cdot \sigma_{j}\left|N_{i}\right\rangle / 3, \tag{19}\\
g_{v 1}^{u} & \equiv\left\langle N_{f}\right| \sum_{j} I_{j}^{K} I_{j}^{\pi} \sigma_{j}^{z}\left|N_{i}\right\rangle, \tag{20}\\
g_{v 2}^{u} & \equiv\left\langle N_{f}\right| \sum_{i \neq j} I_{i}^{K} I_{j}^{\pi}\left(\sigma_{i} \times \sigma_{j}\right)_{z}\left|N_{i}\right\rangle / 2 . \tag{21}
\end{align*}
$$

The numerical values of these factors can be derived in the $S U(6) \otimes O(3)$ symmetry limit.

Separation of the resonance contributions

- All the resonances with the same number n are degenerate to each other. We need separate out the single resonance contribution out.
In s channel, for $\mathrm{n}=0$, only the \wedge contributing to the amplitude, which can be written as

$$
\begin{equation*}
\mathcal{M}_{\Lambda}^{s}=\mathcal{O}_{\Lambda} \frac{2 M_{\Lambda}}{s-M_{\Lambda}^{2}} e^{-\left(\mathbf{k}^{2}+\mathbf{q}^{2}\right) / 6 \alpha^{2}} \tag{22}
\end{equation*}
$$

with

$$
\begin{equation*}
\mathcal{O}_{\wedge}=g_{s 2} \mathbf{A}_{o u t} \cdot \mathbf{A}_{i n}+g_{v 2} i \sigma \cdot\left(\mathbf{A}_{\text {out }} \times \mathbf{A}_{i n}\right) \tag{23}
\end{equation*}
$$

where M_{\wedge} is the \wedge-hyperon mass.

- For $\mathrm{n}=1$, the amplitude can be written as

$$
\begin{equation*}
\mathcal{M}_{R}^{s}=\frac{2 M_{R}}{s-M_{R}^{2}+i M_{R} \Gamma_{R}} \mathcal{O}_{R} e^{-\left(\mathbf{k}^{2}+\mathbf{q}^{2}\right) / 6 \alpha^{2}} \tag{24}
\end{equation*}
$$

Here S and D waves involve in the reaction. According to the roles of S and D waves, firstly we can separate out the amplitudes for them:

$$
\begin{align*}
\mathcal{O}_{S} & =-\frac{1}{2} g_{s 2}\left(\left|\mathbf{A}_{\text {out }}\right| \cdot\left|\mathbf{A}_{\text {in }}\right| \frac{|\mathbf{k}||\mathbf{q}|}{9 \alpha^{2}}-\frac{\omega_{K}}{6 \mu_{q}} \mathbf{A}_{\text {out }} \cdot \mathbf{q}-\frac{\omega_{\pi}}{3 m_{q}} \mathbf{A}_{\text {in }} \cdot \mathbf{k}+\frac{\omega_{\pi} \omega_{K}}{2 m_{q} \mu_{q}} \frac{\alpha^{2}}{3}\right), \tag{25}\\
\mathcal{O}_{D} & =-\frac{1}{2} g_{s 2}\left|\mathbf{A}_{\text {out }}\right| \cdot\left|\mathbf{A}_{\text {in }}\right|\left(3 \cos ^{2} \theta-1\right) \frac{|\mathbf{k}||\mathbf{q}|}{9 \alpha^{2}}-\frac{1}{2} g_{\text {ov }} i \sigma \cdot\left(\mathbf{A}_{\text {out }} \times \mathbf{A}_{\text {in }} \frac{\mathbf{k} \cdot \mathbf{q}}{3 \alpha^{2}} .\right. \tag{26}
\end{align*}
$$

In the NRCQM, the $n=1$ shell contains three different $\operatorname{SU}(6)$ representations:

1. $\left[70,{ }^{2} 1\right]: \wedge(1405) S_{01}$ and $\wedge(1520) D_{03}$ (no counterparts in the nucleon spectrum)
2. [70, ${ }^{2}$ 8]: $\wedge(1670) S_{01}$ and $\wedge(1690) D_{03}$ (partners of the nucleon resonances $S_{11}(1535)$ and $D_{13}(1520)$)
3. $\left[70,{ }^{4} 8\right]: \wedge(1800) S_{01}$ and $\wedge(1830) D_{05}$ (the contributions of $\left[70,{ }^{4} 8\right]$ are forbidden in $K^{-} p \rightarrow \Sigma^{0} \pi^{0}$ due to the so-called " \wedge-selection rule" ${ }^{* *}$)
${ }^{* *}$ Q. Zhao and F. E. Close,PRD 74, 094014 (2006);N. Isgur, G. Karl and R. Koniuk,PRL41, 1269 (1978);A. J. G. Hey, P. J. Litchfield and R. J. Cashmore,NPB 95, 516 (1975)

- The separated amplitudes for the S - and D-wave can thus be re-written as

$$
\begin{align*}
\mathcal{O}_{S} & =\left[g_{S_{01}(1405)}+g_{S_{01}(1670)}\right] \mathcal{O}_{S} \tag{27}\\
\mathcal{O}_{D} & =\left[g_{D_{03}(1520)}+g_{D_{03}(1690)}\right] \mathcal{O}_{D} \tag{28}
\end{align*}
$$

where the factor $g_{R}\left(R=S_{01}\right.$ (1405), etc) represents the resonance transition strengths in the spin-flavor space, and is determined by the matrix element $\left\langle N_{f}\right| H_{\pi}\left|N_{j}\right\rangle\left\langle N_{j}\right| H_{K}\left|N_{i}\right\rangle$. Their relative strengths can be explicitly determined by the following relations

$$
\begin{align*}
& \frac{g_{S_{01}(1405)}}{g_{S_{01}(1670)}}=\frac{\left\langle N_{f}\right| I_{3}^{\pi} \sigma_{3}\left|S_{01}(1405)\right\rangle\left\langle S_{01}(1405)\right| I_{3}^{K} \sigma_{3}\left|N_{i}\right\rangle}{\left\langle N_{f}\right| I^{\pi} \sigma_{3}\left|S_{01}(1670)\right\rangle\left\langle S_{01}(1670)\right| I_{3}^{K} \sigma_{3}\left|N_{i}\right\rangle} \tag{29}\\
& \frac{g_{D_{03}(1520)}}{g_{D_{03}(1690)}}=\frac{\left\langle N_{f}\right| I_{3}^{\pi} \sigma_{3}\left|D_{03}(1520)\right\rangle\left\langle D_{03}(1520)\right| I_{3}^{K} \sigma_{3}\left|N_{i}\right\rangle}{\left\langle N_{f}\right| I^{\pi} \sigma_{3}\left|D_{03}(1690)\right\rangle\left\langle D_{03}(1690)\right| I_{3}^{K} \sigma_{3}\left|N_{i}\right\rangle} \tag{30}
\end{align*}
$$

- Various g and g_{R} factors defined in this work and extracted in the symmetric quark model.:

factor	value	factor	value
$g_{s 1}^{u}$	$1 / 2$	g_{t}^{s}	$\sqrt{2} / 2$
$g_{s 2}^{u}$	$2 / 3$	g_{t}^{v}	$-\sqrt{2} / 6$
$g_{v 1}^{u}$	$-1 / 6$	$g_{S_{01}(1405)}$	$3 / 2$
$g_{v 2}^{u}$	-1	$g_{S_{01}(1670)}$	$-1 / 2$
$g_{s 2}$	$2 / 3$	$g_{D_{03}(1520)}$	$3 / 2$
$g_{v 2}$	1	$g_{D_{03}(1690)}$	$-1 / 2$

3. The role of \wedge resonances in the reaction

- The parameters
- The roles of \wedge resonances
- The backgrounds

The parameters

- Breit-Wigner masses $M_{R}(\mathrm{MeV})$ and widths $\Gamma_{R}(\mathrm{MeV})$ for the resonances in the s-channel. States in the $n=2$ shell are treated as degenerate to n :

resonance	M_{R}	Γ_{R}	M_{R} (PDG)	Γ_{R} (PDG)
$S_{01}(1405)$	1420	48	1406 ± 4	50 ± 2
$\left.S_{01} 1670\right)$	1697	65	1670 ± 10	$25 \sim 50$
$D_{03}(1520)$	1520	8	1520 ± 1	16 ± 1
$D_{03}(1690)$	1685	63	1690 ± 5	60 ± 10
$n=2$	1850	100		

- The other input parameters used in this work are grouped as below

$$
\begin{array}{ll}
\alpha=0.4 \mathrm{GeV}, & m_{u}=m_{d}=330 \mathrm{MeV} \\
m_{s}=450 \mathrm{MeV}, & f_{K}=160 \mathrm{MeV} \\
f_{\pi}=132 M e V, & \delta=1.557 \\
G_{v}=38, & g_{\kappa K \pi}=4
\end{array}
$$

- The differential cross sections for $P_{K}=475 \sim 775 \mathrm{MeV} / \mathrm{c}$ (i.e. $W=$ 1536 ~ 1687 MeV):

The roles of the resonances

- The configuration mixing between $\left[70,{ }^{2} 1\right]$ and $\left[70,{ }^{2} 8\right]$ in $\wedge(1405)$ and $\wedge(1670)$.
We empirically introduce a mixing angle between $\left[70,{ }^{2} 1\right]$ and $\left[70,{ }^{2} 8\right]$ within the physical states $S_{01}(1405)$ and $S_{01}(1670)$, i.e.

$$
\begin{align*}
\left|S_{01}(1405)\right\rangle & =\cos (\theta)\left|\mathbf{7 0},{ }^{2} \mathbf{1}\right\rangle-\sin (\theta)\left|\mathbf{7 0},{ }^{2} \mathbf{8}\right\rangle \tag{31}\\
\left|S_{01}(1670)\right\rangle & =\sin (\theta)\left|70,{ }^{2} \mathbf{1}\right\rangle+\cos (\theta)\left|70,{ }^{2} \mathbf{8}\right\rangle \tag{32}
\end{align*}
$$

- The solid and dotted curves correspond to the results with and without configuration mixing respectively.
Configuration mixing is needed. In agreement with coupled channel studies based on $\mathrm{U}^{2} \mathrm{PT}{ }^{\dagger \dagger}$

${ }^{\dagger} \dagger$ D. Jido, J. A. Oller, E. Oset, A. Ramos and U. G. Meissner, NPA 725, 181 (2003).
- The partial wave contributions to the differential cross section

- The exclusive cross sections for different contributions.

- The $\wedge(1405) S_{01}$ is very crucial in the reactions. It is the major contributor of the S-wave amplitude in the low-energy region. In particular, in the region of $P_{K} \simeq 300 \mathrm{MeV} / \mathrm{c}, \wedge(1405) S_{01}$ dominates the amplitudes, and contributions of the other resonances are nearly invisible in the total cross section.
- Around $P_{K}=400 \mathrm{MeV} / \mathrm{c}$, the $\wedge(1520) D_{03}$ is responsible for the strong resonant peak in the total cross section.
- Around $P_{K}=800 \mathrm{MeV} / \mathrm{c}$, the differential cross sections are sensitive to the $\wedge(1670) S_{01}$. In this energy region the role of $\Lambda(1690) D_{03}$ is visible, but less important than $\wedge(1670) S_{01}$.

The backgrounds

- The backgrounds u channel contributions are crucial in the reactions, which agrees with the $\cup \chi$ PT predictions. $\ddagger \ddagger$
- The backgrounds t channel contributions are significant in the reactions, Which is dominated by the vector meson K^{*} ex-change.
\#Ғ. A. Oller,EPJA 28, 63 (2006);J. A. Oller, J. Prades and M. Verbeni,PRL 95, 172502 (2005)

4. Conclusions

- The $\wedge(1405) S_{01}$ dominates the reactions over the energy region considered here.
- Around $P_{K} \simeq 400 \mathrm{MeV} / \mathrm{c}$, the $\wedge(1520) D_{03}$ is responsible for a strong resonant peak in the cross section.
- The $\wedge(1670) S_{01}$ has obvious contributions around $P_{K}=750 \mathrm{MeV} / \mathrm{c}$, while the contribution of $\Lambda(1690) D_{03}$ is less important in this energy region.
- The non-resonant background contributions, i.e. u-channel and t-channel, also play important roles in the explanation of the angular distributions due to amplitude interferences. In the t-channel, the K^{*}-exchange is more dominant over the κ-exchange.
- There exist configuration mixings within the $\wedge(1405)$ and $\wedge(1670)$ as admixtures of the $\left[70,{ }^{2} 1,1 / 2\right]$ and $\left[70,{ }^{2} 8,1 / 2\right]$ configurations. $\wedge(1405)$ is dominated by $\left[70,{ }^{2} 1,1 / 2\right]$, and $\wedge(1670)$ by $\left[70,{ }^{2} 8,1 / 2\right]$.

Thanks very much for your attentions!

