Summary and Remarks

T.-S. Harry Lee

Argonne National Laboratory

and

Excited Baryon Analysis Center (EBAC), Jefferson Laboratory

Problems to solve in N^* Physics

 Need Accurate data for extracting partial-wave amplitudes (PWA) as model independently as possible

Perform complete measurements of πN and $\gamma^* N$ reactions

- Fit the extracted PWA/data within a reaction model for extracting resonance poles on complex E-plane.
 - 1. Establish baryon spectra
 - **2.** Determine N-N* transition form factors
- Interpret the extracted resonance parameters

This workshop:

 \rightarrow

 \rightarrow

A lot of progress in all three directions have been reported.

Experimental advances

Impressive progress has been made toward complete measurements Jlab :

- Single and double polarization data of π , $\pi\pi$, $K \cdots$ production have been obtained
- Over-complete measurements of $K^+\Lambda$ will be performed
- Data on polarized "neutron" will be obtained with HD-ICE target

Bonn-ELSA:

- Single and double polarization data of π^0 , η , ω , $\pi^0\pi^0$, $\pi^0\eta$ production have been obtained
- More measuements will be performed

Mainz-MAMI:

- Single and double polarization data of π , η , $\pi\pi$ have been obtained
- Complete measurements with Crystal Ball+TAPS will be performed

BES:

- BES-III started July, 2008
- A lot of Ψ , Ψ' , Ψ'' have been accumulated for analyzing $\Psi' s \rightarrow N^* \overline{N} \cdots$ to discover higher mass N^* 's

LEPS/Spring-8:

- E_{γ} is increased to 3.2 GeV
- Polarized HD target will be available
- Θ^+ study will be finalized soon.

Julich-COSY:

- Data on $pp \rightarrow pK^+Y$ revealed roles of $\Lambda(1405)$, Y(1480) and $\Delta(1620)$
- Data of $pp \rightarrow pp\pi^0\pi^0$ disagree with double- Δ mechanisms

Remark:

 \rightarrow

Obsevables are determined **bi-linearly** by PWA

It is not clear how the data from the complete/over-complete measurements can be used to obtain model independent PWA.

Example: scalar-meson scalar-meson elastic scattering

Only one observable, two numbers to be determined

$$\frac{d\sigma}{d\Omega} = |f(\theta)|^2$$
$$f(\theta) = e^{\Phi(\theta)}|f(\theta)|$$

Data Analysis and Resonance Extractions

- 1. K-matrix models
 - GWU/VPI:

 \rightarrow

- 1. Some 3-stars N^* in PDG are not confirmed
- 2. Two poles near $\pi\Delta$ threshold are found in P_{11}
 - can not be parameterized as Briet-Wigner (BW) form
- JLAB:
 - 1. N- N^* form factors for P_{33} (1232), $S_{11}(1535)$, $D_{13}(1520)$, $D_{33}(1655)$ have been determined
 - 2. N- N^* form factors for higher mass N^* are being determined.

- Mainz:
 - 1. 13 N- N^* form factors have been extracted
 - 2. disagree with JLab results at high Q^2
- Bonn-Catchina :
 - 1. Very extensive photoproduction data are included in the analysis.
 - 2. Some new high mass N^* have been proposed.

Remarks:

Extracted N- N^* form factors have very small errors.

 \rightarrow

Puzzle:

Any room for improvements when we have data from complete measurements ??

Note :

New double polarization data from Bonn-ELSA disagree with predictions from SAID, MAID, and Bonn-Catchina models

2. Dynamical Models

- EBAC model
 - 1. Fits to $\pi N \rightarrow \pi N, \eta N, \pi \pi N$ data have been obtained
 - 2. Resonance poles in s, p, d, f waves have been extracted by using analytic continuation method
 - 3. Fits to π and η photoproduction and electroproduction data have been obtained.
 - 4. Combined analysis of $\pi N, \gamma^* N \to \pi N, \eta N, \pi \pi N$ is underway
- Julich Model
 - 1. Resonance poles have been extracted by using analytic continuation method
 - 2. Procedure for relating to LQCD is being investigated.
 - 3. Reggy phenomenology is used to constrain the high energy behavior
 - 4. Results of η' photoproduction are presented.

Remark:

New information for understanding the Roper $N^{\ast}(1440)$ have been reported :

- GWU/VPI, Julich, and EBAC all find two poles in P_{11} near $\pi\Delta$ threshold (~ 1385 MeV)
- N- N^* (1440) form factors extracted by JLab-UIM and Mainz-MAID suggest that N^* (1440) is due to radial excitations of 3-q configuration
- $N^*(1440)$ is clearly seen in BES's data of $\Psi \to N^* \bar{N}$

Interpretations of extracted N^* parameters

- Lattice QCD calculations
 - 1. Calculations of N^* masses and N- N^* form factors will be improved with petaflop/s computation power
 - 2. Only the action with chiral symmetry is suitable for investigating N^*
 - 3. Calculations of N- Δ (1232) and N- N^* (1440) form factors have been performed and are being improved.
- Dyson-Schwinger Equation (DSE) Model
 - 1. Very successful in describing mesons and nucleon form factors
 - 2. The only covariant model which has crucial running quark masses for investigating Q^2 dependence of N- N^* form factors.
 - 3. Calculations of $N-\Delta$ (1232) and $N-N^*(1440)$ form factors are underway

- Constituent quark models (CQM)
 - 1. The N- N^* (1440) form factors extacted by JLab and Mainz agree well with the predictions from relativistic CQM.
 - 2. Models including $qqqq\bar{q}$ components have been developed to understand N^* properties
 - 3. Predicted N- N^* couplings have been used to analyze η photoproduction data within EBAC model
- Chiral Unitary Model
 - 1. 2-mesons + 1-baryon resonances have been predicted and compared with the N^* massess listed by PDG
 - 2. The hidden gauge approach of Bando is used to include vector mesons for predicting higher mass baryon resonances
 - 3. Continue to apply the model to investigate reactions induced by π , K and γ .

Remark:

In comparing the predictions from hadron structure calculations with the extracted N^* parameters, one must be careful in examining the dynamical content of the reaction models used in the data analysis.

Note:

 N^* parameters extracted from resonance poles and from using Briet-Wigner parameterization can be very different.

Need some theoretical investigations

 \rightarrow

 \rightarrow

3-ways collaborative efforts:

Hadron structure calculations \leftrightarrow Reaction Models \leftrightarrow Data

Other developments

- N^* project at Lanchow proton facility is being developed : Have considered $NN \rightarrow NN^* \rightarrow \pi NN \cdots$
- New reaction mechanisms of $K\Lambda$ photoproductions have been identified in an effective Lagrangian approach
- Progress in understanding nucleon spins have been reported
- • •

Concluding remarks

- A lot of progress have been made since the last N^* workshop
- N* physics is very challenging and needs international collaborations, such as the proposed Pire project for developing US-China collaboration
- This is a very successful meeting with many discussions