Reaction dynamics for photoproductions of baryon resonances

> Atsushi Hosaka RCNP, Osaka Univ.

April 19-22, 2009 NSTAR2009,@IHEP, Beijing

1. Introduction

Exotic structure of baryon resonances qq and/or $q\overline{q}$ correlations

2. Production reactions

We define the standard mechanism $\Lambda_{gs}K$, $\Lambda(1405)$, $\Lambda(1520)$, ϕ *Various cross sections with use of spin*

3. Chiral symmetry of baryons *N*(940) and *N**(1535)

1. Introduction Exotic structure of baryon resonances

• Quark model (*standard* picture) *qq* and *qqq* of **single particle motion**

• Exotics are not the *standard*

Correlated qq *Diquark*

Correlated qq Meson

Apr. 19-22, 2009 Not Active to the both virtual and (almost) real

Example in Nuclear Physics Y. Funaki, A. Tohsaki, H. Horiuchi, $^{12}C 0_2^+$ Hoyle state P. Schuck, α cluster G. Roepke Exotic α cluster correlation gas 10 MeV Weakly interacting alpha particles **Standard simple** 0 Me∀ ~ single particle like

ground state

2. Production reactions

 $(1) KA_{gs}$ Beam asymmetry, Meson cloud (2) KA(1405)Energy dependence Beam asymmetry (3) KA(1520)Energy dependence, Angular (θ) dependence Beam asymmetry, Decay asymmetry

(4) ϕ -production

Pomeron, exotics, resonances??

Effective Lagrangian method - Photoproductions -

(1) Meson Clouds for K-production virtual qq

Ozaki-Nagahiro-Hosaka Phys.Lett.B665:178-181,2008.

Apr. 19-22, 2009

NSTAR@IHEP, Beijing

$$\sigma(\phi) \Longrightarrow \Sigma = \frac{\sigma(90^\circ) - \sigma(0^\circ)}{\sigma(90^\circ) + \sigma(0^\circ)}$$

Beam asymmetry

 $\gamma p \longrightarrow K^- \Lambda$

LEPS data Sumihama et al. PRC73,035214 (2006) Also talk by Schumacher Jlab data

(2) $\Lambda(1405) \sim \Lambda^*$

Total σ

Consistent with the new data by Muramatsu et al 0904.2034[nucl-ex] NSTAR@IHEr, Beijing 13

t/θ dependence

Forward peak

Data: D.P. Baber et al, Z. Phys. C7, 17 (1980)

Apr. 19-22, 2009

Beam asymmetry

Quark model $g_{K^*N\Lambda^*} \sim 10$

Chiral unitary $g_{K^*N\Lambda^*} \sim 1.5$

-0.01±0.07 Muramatsu et al

S. P. Barrow et al@JLab PRC64, 044601 (2001)

Apr. 19-22, 20 has weak θ-dependence sijing

D. Barber et al., Z. Phys. C7, 17 (1980)

Muramatsu et al 0904.2034[nucl-ex]

(4) ϕ production

γ N -> φ N

Increase as E

Bump at 2 GeV or Dip at 2.2 GeV

Mibe et al PRL95,182001 (2005)

Increase via meson exchanges

• Increasing as energy is increased

• Forward peak

Apr. 19-22, 200

Resonance? T

Titov, Lee, PRC, 065205 (2003)

3. Chiral symmetry of baryons

D. Jido, M. Oka, A. Hosaka,
Prog. Theor. Phys. 106 (2001) 823-834
Prog. Theor. Phys. 106 (2001) 873-908,
K. Nagata, A. Hosaka, V. Dmitrasinovic,
Phys. Rev. Lett. 101: 092001, 2008,
Eur. Phys. J, C57: 557-567, 2008

Does it make sense to talk about *linear representations in the broken world?* Asked by Weinberg, and the probable answer is YES S. Weinberg, Phys. Rev. Lett. 65, 1177 (1990) S. Weinberg, Phys. Rev. 177 (1969) 2604

Chiral representations

 $\pi \sim qq^* \sim (1/2, 1/2) \sim \sigma \qquad Q, a_1 \sim (1,0) + (0,1)$ SU(2) x SU(2) *Parity pair*

What are chiral representations of baryons?

qqq can accommodate only (1/2, 0)+(0, 1/2)

K. Nagata, A. Hosaka, V. Dmitrasinovic, Eur. Phys. J, C57: 557-567, 2008

Complex structure allows any representations (A, B) + (B, A)

Fig. 1. Mass splittings of positive and negative parity hadrons in various channels. Data are taken from the Particle Data Booklet¹¹. The uncertain mass of sigma (σ) is hatched.

Mirror representation

One of the simplest but nontrivial representation

Naive:
$$(1/2, 0)+(0, 1/2)$$

 $\psi_L + \psi_R$
 qqq
 $g_A = +1$ $g_{\pi BB} = +1$

Mirror representation

One of the simplest but nontrivial representation

Naive: (1/2, 0)+(0, 1/2) $\psi_L + \psi_R$ qqq g_{qq} $g_A = +1$ $g_{\pi BB} = +1$ Mirror: (0, 1/2)+(1/2, 0) $\psi_L + \psi_R$ $qqqq\bar{q}$ $g_A = -1$ $g_{\pi BB} = -1$

Axial-charge carry information on internal structure

Observe the sign of g_A

Assume minimal processes with N and N(1535)

Naive: $g_{\pi N^*N^*} = g_{\pi NN}$ -> constructive Mirror: $g_{\pi N^*N^*} = -g_{\pi NN}$ -> destructive

NSTAR@IHEP, Beijing

Pion-induced production

Jido, Oka, Hosaka Prog. Theor. Phys. 106, 873, 2001

Photoproduction

Jido, Oka, Hosaka Prog. Theor. Phys. 106, 873, 2001

Summary

• Exotics may have *correlations*

qq, qq, qqq

Question remains; how are they realized and observed

- Importance of the virtual meson clouds in $K\Lambda$ prod.
- $\Lambda(1405)$ seems very unusual
- $\Lambda(1520)$ can be explained by standard react. mechanism Structure information is in various coupling constants
- Possible explanation of ϕ production: $N^* \sim 2100 \text{ MeV}$
- Chiral symmetry repr. can be a measure of structure $Mirror g_A$ is a good signal Apr. 19-22, 2009 NSTAR@IHEP, Beijing 3