# $\eta$ -production on the proton *via* electromagnetic and hadronic probes

Bijan Saghai

Institut de Recheche sur les lois Fondamentales de l'Univers, CEA-Saclay

Collaborators :

Johan Durand (Saclay), Jun He (Lanzhou), Bruno Julia-Diaz (Barcelona), Harry Lee (Argonne), Zhenping Li (Maryland), Toru Sato (Osaka) (IHEP)

April 22, 2009

NSTAR 2009, IHEP Beijing

# $\pi^- p \rightarrow \eta n \text{ and } \gamma p \rightarrow \eta p$ $W \lesssim 2 \text{ GeV}$

## PLAN :

- Introduction
- Chiral constituent quark model  $(\gamma p \rightarrow \eta p)$
- Dynamical coupled-channels (EBAC)
- Results for  $\pi^- p \rightarrow MB \rightarrow \eta n$  and  $\gamma p \rightarrow MB \rightarrow \eta p$
- Conclusions

E SQA

#### • Reactions mechanisms

• Role of nucleon resonances : PDG, "missing", "new"



### Investigating $\gamma p \rightarrow MB \rightarrow \eta p$

 $T_{\gamma N \to \eta N} = (v_{\gamma N \to \eta N}^{NR} + v_{\gamma N \to \eta N}^{R})(1 + G_{\eta N} t_{\eta N \to M B \to \eta N}^{NR}) + v_{\gamma N \to \pi N}^{NR} G_{\pi N} t_{\pi N \to M B \to \eta N}^{NR}$ 

- Direct channel : γp → ηp
   CQM : He, Saghai, Li, PR C78, 035204 (2008)
- Coupled-channels  $\pi N \to MB \to \eta n$ ,  $MB \equiv \pi N, \eta N, \pi \Delta, \sigma N, \rho N$ Durand, Julia-Diaz, Lee, Saghai, Sato, PR C78, 025204 (2008) EBAC :  $\pi N \to MB \to \pi N$  : Julia-Diaz, Lee, Matsuyama, Sato, PR C76, 065201 (2007)  $\to$  JLMS Model
- $\gamma N \rightarrow \pi N$

Sato and Lee, PR C54, 2660 (1996).

• Coupled-channels  $\gamma p \rightarrow MB \rightarrow \eta p$ 

▲ロト ▲圖ト ▲画ト ▲画ト 三回 - のへで

#### Chiral constituent quark model

$$\mathcal{L} = \bar{\psi}[\gamma_{\mu}(i\partial^{\mu} + V^{\mu} + \gamma_{5}A^{\mu}) - m]\psi + \cdots$$
$$\frac{d\sigma^{c.m.}}{d\Omega} = \alpha_{e}g_{\eta NN}\frac{(E_{N} + M_{N})(E_{f} + M_{f})}{4s(M_{f} + M_{N})^{2}}\frac{|\mathbf{q}|}{|\mathbf{k}|}|\mathcal{M}_{ff}|^{2}$$

$$\mathcal{M}_{fi} = \langle N_f | H_{m,e} | N_i \rangle + \sum_j \left\{ \frac{\langle N_f | H_m | N_j \rangle \langle N_j | H_e | N_i \rangle}{E_i + \omega - E_j} + \frac{\langle N_f | H_e | N_j \rangle \langle N_j | H_m | N_i \rangle}{E_i - \omega_m - E_j} \right\} + \mathcal{M}_T$$

$$H_m = \sum_j \frac{1}{f_m} \bar{\psi}_j \gamma_j^j \gamma_j^j \psi_j \partial^\mu \phi_m ; H_e = -\sum_j e_j \gamma_\mu^j A^\mu(\mathbf{k}, \mathbf{r})$$

$$\mathcal{M}_{N^*} = rac{2M_{N^*}}{s - M_{N^*}^2 - iM_{N^*}\Gamma(\mathbf{q})} \mathrm{e}^{-rac{\mathbf{k}^2 + \mathbf{q}^2}{6\alpha^2}} \ \mathcal{O}_{N^*}$$

$$\mathcal{O}_{N^*} = if_{1/\pm}\sigma \cdot \epsilon + f_{2/\pm}\sigma \cdot \hat{\mathbf{q}}\sigma \cdot (\hat{\mathbf{k}} \times \epsilon) + if_{3/\pm}\sigma \cdot \hat{\mathbf{k}}\hat{\mathbf{q}} \cdot \epsilon + if_{4/\pm}\sigma \cdot \hat{\mathbf{q}}\epsilon \cdot \hat{\mathbf{q}}$$

 $f_{kl\pm}$  (k=1,...,4) : partial wave amplitude of resonance  $h_{2l, 2l\pm 1}$  ,  $h_{2l} \rightarrow h_{2l} \rightarrow h_$ 

NSTAR 2009, IHEP Beijing

#### $SU(6) \otimes O(3)$ symmetry

• Underlying  $SU(6) \otimes O(3)$  structure of the baryon spectrum established in 70's.

- Configuration mixing among the three-constituent quraks is a consequence of the  $SU(6) \otimes O(3)$  breakdown.
- One-gluon-exchange mechanism generates the configuration mixing of the wave-function.

Wave function within the  $SU(6) \otimes O(3)$  symmetry for  $n \leq 2$  shells as  $X^{2S+1}L_{\pi}J^{P}$  and configuration mixings, with  $J^{P}$ :

$$|S_{11}(1535)\rangle = \cos\theta_{\rm S}|N^2 P_M \frac{1}{2}^-\rangle - \sin\theta_{\rm S}|N^4 P_M \frac{1}{2}^-\rangle$$

 $|S_{11}(1650)\rangle = \sin \frac{\theta_{S}}{N^{2}} |N^{2}P_{M}\frac{1}{2}^{-}\rangle + \cos \frac{\theta_{S}}{N^{4}} |N^{4}P_{M}\frac{1}{2}^{-}\rangle$ 

 $|\textit{Nucleon}\rangle = \textit{c}_{1}|\textit{N}^{2}\textit{S}_{5}\frac{1}{2}^{+}\rangle + \textit{c}_{2}|\textit{N}^{2}\textit{S}_{5}'\frac{1}{2}^{+}\rangle + \textit{c}_{3}|\textit{N}^{4}\textit{D}_{M}\frac{1}{2}^{+}\rangle + \textit{c}_{4}|\textit{N}^{2}\textit{S}_{M}\frac{1}{2}^{+}\rangle + \textit{c}_{5}|\textit{N}^{2}\textit{P}_{A}\frac{1}{2}^{+}\rangle$ 

#### Coupled-channels (EBAC)

cf. Talks by Hiroyuki Kamano, Turo Sato, & Bruno Julia-Diaz

Schematically, in each partial wave, the MSL model solves

$$t_{MB,M'B'}(E;k,k') = v_{MB,M'B'}(k,k') + \sum_{\alpha} \int_{0}^{\infty} dk'' v_{MB,\alpha}(k,k'') G_{\alpha}(E,k'') t_{\alpha,M'B'}(E;k'',k')$$

$$t^{\mathcal{R}}_{MB,M'B'}(E) = \sum_{N^*_i,N^*_j} \overline{\Gamma}_{MB \to N^*_i}(E) \frac{1}{(E - M^0_{N^*_i})\delta_{i,j} - \overline{\Sigma}_{ij}(E)} \overline{\Gamma}_{N^*_j \to M'B'}(E)$$

$$\overline{\Gamma}_{MB\to N^*}(E) = \Gamma_{MB\to N^*} + \sum_{M'B'} t_{MB,M'B'}(E) G_{M'B'}(E) \Gamma_{M'B'\to N^*}$$

$$\overline{\Sigma}_{ij}(E) = \sum_{MB} \Gamma_{N_i^* \to MB} G_{MB}(E) \overline{\Gamma}_{MB \to N_j^*}$$

Bijan Saghai (Irfu/CEA-Saclay)

April 22, 2009 7 / 24

## Models

- Ingredients (N\*s)
- Adjustable parameters
- Model / data comparisons
- Reaction mechanism

#### Model for $\pi^- p \rightarrow MB \rightarrow \eta n$ ; W < 1.8 GeV

• 
$$MB \equiv \pi N, \eta N, \pi \Delta, \sigma N, \rho N$$

• 9  $N^*$  :  $S_{11}(1535)$ ,  $S_{11}(1650)$ ,  $P_{11}(1440)$ ,  $P_{11}(1710)$ ,  $P_{13}(1720)$ ,

 $D_{13}(1520), D_{13}(1700), D_{15}(1675), F_{15}(1680)$ 

#### Adjustable Parameters :

Background terms : 2 parameters  $g_{\eta NN}$  $V_{nNN} \in [600; 1200] \text{ MeV}$ 

N\*s : 3 parameters per resonance  $M_{N^*} \in [M - 20 MeV; M + 20 MeV]$  $g_{\eta NN*}$ 

Total of 29 parameters.

Parameters for other intermediate states ( $MB \equiv \pi N$ , ,  $\pi \Delta$ ,  $\sigma N$ ,  $\rho N$ ) fixed to their values determined by JLMS fitting  $\pi N \rightarrow \pi N$ )

Data base : 255  $d\sigma/d\Omega$ 

$$\chi^2_{pdp}=$$
 2.32 ; JLMS :  $\chi^2_{pdp}=$  6.94

April 22, 2009

9 / 24

 $d\sigma/d\Omega$  for  $\pi^- p \rightarrow \eta n$ 



April 22, 2009 10 / 24

 $d\sigma/d\Omega$  for  $\pi^- p 
ightarrow \eta n$ 



Bijan Saghai (Irfu/CEA-Saclay)

NSTAR 2009, IHEP Beijing

April 22, 2009 11 / 24

#### "Postdiction" : $\sigma_{tot}$ for $\pi^- p \rightarrow \eta n$



#### Model for $\gamma p \rightarrow MB \rightarrow \eta p$ ; $W \leq 2.1 \text{ GeV}$

- $MB \equiv \pi N, \eta N, \pi \Delta, \sigma N, \rho N$
- 12  $N^*$ :  $S_{11}(1535)$ ,  $S_{11}(1650)$ ,  $P_{11}(1440)$ ,  $P_{11}(1710)$ ,  $P_{13}(1720)$ ,  $P_{13}(1900)$ ,  $D_{13}(1520)$ ,  $D_{13}(1700)$ ,  $D_{15}(1675)$ ,  $F_{15}(1680)$ ,  $F_{15}(2000)$ ,  $F_{17}(1990)$
- Higher mass  $N^* > 2 \text{ GeV}$  : HM  $N^*$

● 2 new *N*\* :

 $S_{11}$ : M = 1707 MeV, Γ = 222 MeV  $D_{13}$ : M = 1950 MeV, Γ = 139 MeV

• No evidence for missing  $N^*s$ 

#### Adjustable Parameters :

- *g*<sub>ηNN</sub>
- $m_q$  : non-strange quarks average mass
- $\alpha$  : harmonic-oscillator strength
- $\alpha_s$  : QCD coupling constant
- $\Omega, \Delta$  : confinement constants
- $C_{P_{13}}$  : Strength of the  $P_{13}$
- Higher mass  $N^*$ : 3 parameters (M,  $\Gamma$ , and  $C_{N^*}$ )
- New  $N^*$ s : 3 parameters per new resonance  $(M, \Gamma, \text{ and } C_{N^*})$

Total of 10+9=19 parameters.

#### Data base : 751 $d\sigma/d\Omega$ , 119 $\Sigma$

 $\chi^2_{pdp} = 1.44$ 

 $d\sigma/d\Omega$  for  $\gamma p \rightarrow \eta p$ 



Bijan Saghai (Irfu/CEA-Saclay)

NSTAR 2009, IHEP Beijing

April 22, 2009 14 / 24

 $d\sigma/d\Omega$  for  $\gamma p \rightarrow \eta p$ 



Bijan Saghai (Irfu/CEA-Saclay)

April 22, 2009 15 / 24

#### "Postdiction" : $\sigma_{tot}$ for $\gamma p \rightarrow \eta p$



Bijan Saghai (Irfu/CEA-Saclay)

April 22, 2009 16 / 24

3

$$\Sigma$$
 for  $\vec{\gamma} p \rightarrow \eta p$ 



April 22, 2009 17 / 24

3

<ロ> (日) (日) (日) (日) (日)

#### Prediction : T for $\gamma \vec{p} \rightarrow \eta p$



Bijan Saghai (Irfu/CEA-Saclay)

NSTAR 2009, IHEP Beijing

April 22, 2009 18 / 24

Real parts of the  $\pi N \rightarrow \pi N$  *T*-matrices for isospin 1/2 partial waves



April 22, 2009 19 / 24

# Imaginary parts of the $\pi N \rightarrow \pi N$ *T*-matrices for isospin 1/2 partial waves



Bijan Saghai (Irfu/CEA-Saclay)

April 22, 2009 20 / 24

Real parts of the  $\pi N \rightarrow \eta N$  *T*-matrices for isospin 1/2 partial waves



April 22, 2009 21 / 24

# Imaginary parts of the $\pi N \rightarrow \eta N$ *T*-matrices for isospin 1/2 partial waves



Bijan Saghai (Irfu/CEA-Saclay)

April 22, 2009 22 / 24

#### Concluding remarks

- EBAC's Dynamical coupled-channels apprach complemented with a CQM
- $\bullet~$  Reasonable agreement with data for both strong and electromagnetic initial states for  $W \lesssim 2~{\rm GeV}$
- Reaction mechanisms dominated by :  $S_{11}(1535)$ ,  $S_{11}(1650)$ ,  $P_{13}(1720)$ ,  $D_{13}(1520)$ ,  $F_{15}(1680)$
- S<sub>11</sub>: M = 1707 MeV, Γ = 222 MeV; D<sub>13</sub>: M=1950 MeV, Γ = 139 MeV

Forthcoming improvements :

- Extension of the CQM to  $n \le 6$ -shell  $\rightarrow W \le 2.5$  GeV for  $\gamma p \rightarrow \eta p$ He, Li, Saghai, Zhao, in preparation
- extend the EBAC approach to ππN channel Kamano, Julia-Diaz, Lee, Matsuyama, Sato, PR C79, 025206 (2009)
- Embody the  $\pi\pi N$  channel in the  $\pi N \rightarrow MB \rightarrow \pi N$  code

• Go back to 
$$\gamma p \rightarrow MB \rightarrow \eta p$$

Data :

- Badly missing  $\pi N \rightarrow \eta N$
- Double polarization  $\vec{\gamma}\vec{p} \rightarrow \eta p$  measurements at ELSA and JLab

NSTAR 2009, IHEP Beijing

### Thank you for your attention !

3

- ∢ ≣ →

< 67 ▶