Outlook

Inequalities on spin observables Application to photoproduction and other reactions

Jean-Marc Richard Jean-Marc.Richard@lpsc.in2p3.fr

Laboratoire de Physique Subatomique et Cosmologie Université Joseph Fourier – IN2P3 53, avenue des Martyrs, F-38026 Grenoble Cedex, France

NSTAR 2009, Beijing, China, April 2009

ヘロト ヘ戸ト ヘヨト ヘヨト

Collaboration with

- Xavier Artru (Lyon)
- Mohktar Elchikh (Oran, Algeria),
- Jacques Soffer (Temple U.)
- Oleg Teryaev (Dubna)

イロト イロト イヨト イヨト

Outline

Introduction

2 Exclusive reactions

- Simple case: elastic $\pi + N \rightarrow \pi + N$
- Crossed reaction: $\bar{p}p \rightarrow \pi\pi$
- Spin observables in $\bar{\rm p}{\rm p}\to\overline{\Lambda}\Lambda$
- Spin observables in pseudoscalar photoproduction
- Vector-meson photoproduction

Inclusive reactions

- Inclusive hadronic reactions
- Quark distribution functions

Outlook

イロト 不得 トイヨト イヨト

Introduction	

Introduction-1

- Spin observables are necessary to test the details of the dynamics,
- For instance, vector mesons anticipated (Breit) from the onset of spin-orbit forces in proton-proton scattering,
- For instance, helicity rules in QCD.
- Typical scenario: one or two observables are measured first,
- Question naturally arises: which new observable will provide the best improvement of knowledge,
- Corollary: If two or three observables are measured independently, is it possible to test whether they are compatible, without performing a full amplitude analysis?

< ロ > < 同 > < 回 > < 回 >

Introduction-2

- If X, Y, Z, etc. are typical spin observables, with standard normalisation −1 ≤ X ≤ +1
- domain for $\{X, Y\}$ often smaller than the square $[-1, +1]^2$
- domain for $\{X, Y, Z\}$ very often smaller than the cube $[-1, +1]^3$
- Explicit inequalities are obtained relating two or three spin observables, for instance $X^2 + Y^2 \le 1$, $X^2 + Y^2 + Z^2 \le 1$.
- Also triangles, tetrahedrons and even exotic-looking shapes,

・ロト ・ 同ト ・ ヨト ・ ヨト

Outlook

πN scattering (1)

$$\mathcal{M} = -2m\bar{u}(\tilde{p}') \left[-\mathcal{A} + i\gamma \cdot \frac{\tilde{q} + \tilde{q}'}{2} \mathcal{B} \right] u(\tilde{p})$$
$$= 8\pi\sqrt{s} \chi_f^{\dagger} (f + ig \,\boldsymbol{\sigma} \cdot \boldsymbol{n}) \chi_i ,$$

leading to

$$\begin{aligned} \frac{\mathrm{d}\sigma}{\mathrm{d}\Omega} &= I_0 = |f|^2 + |g|^2 ,\\ I_0 P_n &= I_0 A_n = 2 \, \Im\mathrm{m}(fg^*) ,\\ I_0 A &= (|f|^2 - |g|^2) \cos\vartheta + 2 \, \Re\mathrm{e}(fg^*) \sin\vartheta ,\\ I_0 R &= (|f|^2 - |g|^2) \sin\vartheta - 2 \, \Re\mathrm{e}(fg^*) \cos\vartheta . \end{aligned}$$

either ignored in the analysis (and checked after) or used in the analysis.

Inclusive reactions

Outlook

$\bar{p}p \to \pi\pi$

JMR

Introduction	Exclusive reactions	Inclusive reactions	Outlook
	000000000000000000000000000000000000000	00	
Motivations for	$r \overline{\mathrm{pp}} ightarrow \overline{\Lambda} \Lambda$		

One of the best measured reactions at low-energy. Motivations: disentangle among

Outlook

Results with a polarised target

Last runs of PS185: the analysis led to D_{nn} and K_{nn} and several other observables.

Results of Paschke et al. at 1.637 GeV/c vs. some popular models

Similar results at 1.525 GeV/c. Considered as disappointing.

◆ 同 ▶ → 三 ▶

Inclusive reactions

Outlook

Inequalities

But could have been anticipated on the basis of previous results without polarised target

$$C_{zz}^2 + D_{nn}^2 \le 1$$

< ∃⇒

and similar inequalities.

Inclusive reactions

Outlook

Systematics of inequalities for $\bar{p}p \rightarrow \overline{\Lambda}\Lambda$

Pair of observables Random simulations followed by rigorous derivation.

< 同 > < 三 > < 三 >

Inclusive reactions

Outlook

Cas of three observables of $\bar{p}p \rightarrow \overline{\Lambda}\Lambda$

Bussey et al. (1976) for η , GRAAL (2005) for π^0

< ∃ > < ∃ >

Inclusive reactions

Outlook

Spin observables in $\gamma N \rightarrow K \Lambda$

 $\gamma + \mathrm{N} \rightarrow \mathrm{K} + Y$, and similar, have 4 amplitudes only (Chew et al., 1959). All triples of observables are constrained in a domain smaller than the $[-1,+1]^3$ cube.

For instance, for

- A = target asymmetry
- P = polarisation of recoil baryon
- $\Sigma = \text{beam asymmetry}$

Tetrahedron domain limiting the observables x = A, y = P and $z = \Sigma$.

< ロ > < 同 > < 回 > < 回 >

GRAAL-CLAS analysis

- The reaction $\gamma N \rightarrow K\Lambda$ recently measured by GRAAL (Grenoble) and CLAS (Jlab) at about the same energies, but with different spin observables.
- It is perhaps premature to attempt an unambiguous amplitude analysis combining both data sets, but our inequalities (Phys.Rev.C75:024002,2007, see also, Tabakin et al., Goldstein et al., etc.) can be used to check whether GRAAL and CLAS are compatible.

イロト 不得 トイヨト イヨト

Introduction

Exclusive reactions

Inclusive reactions

Outlook

Some inequalities for $\gamma N \rightarrow K \Lambda$

- A = target asymmetry
- P = polarisation of recoil baryon
- $\Sigma = \text{beam asymmetry}$
- $O_i = beam-recoil$
- $C_i = target-recoil$

$$\begin{split} C_x^2 + C_z^2 + O_x^2 + O_z^2 &= 1 + T^2 - P^2 - \Sigma^2 \ , \\ (P \text{ or } \Sigma)^2 + (O \text{ or } C)_x^2 + (O \text{ or } C)_z^2 &\leq 1 \ , \\ |T \pm P| &\leq 1 \mp \Sigma \ . \\ |O \text{ or } C|_{x,z}| &\leq \min\{\sqrt{1 - \Sigma^2}, \sqrt{1 - P^2}\} \ , \end{split}$$

etc.

・ロッ ・ 一 ・ ・ ヨッ・ ・ ヨッ

 $(P^2 + O_x^2 + O_z^2)^{1/2} \le 1$, $(\Sigma^2 + O_x^2 + O_z^2)^{1/2} \le 1$, $(\Sigma^2 + C_x^2 + C_z^2)^{1/2} \le 1$ and

Inequalities on spin observables

Introduction

Exclusive reactions

Inclusive reactions

Outlook

 $(P^2 + O_x^2 + C_z^2)^{1/2} \le 1$, $(\Sigma^2 + O_z^2 + C_x^2)^{1/2} \le 1$, $(\Sigma^2 + O_x^2 + C_x^2)^{1/2} \le 1$ and $(P^2 + O_z^2 + C_z^2)^{1/2} \le 1$

From a combination of CLAS data (C_x, C_z) and GRAAL data (O_x, O_z)

くぼ ト く ヨ ト く ヨ ト

Inclusive reactions

Outlook

Test of the tetrahedron inequality $|T \pm \Sigma| \mp P \leq 1$

Case of 1222 MeV data.

< 同 > < 三 > < 三 >

Inclusive reactions

Outlook

Summary for pseudo-scalar photoproduction

- Several constraints on pairs of observables,
- All triples contrained,
- Consistency checks of GRAAL data
- Consistency checks of combined GRAAL & CLAS data

< ロ > < 同 > < 回 > < 回 >

Inclusive reactions

Outlook

Vector-meson photoproduction

 $\gamma+\mathrm{N}\to\phi+\mathrm{N}$ and similar, with 12 amplitudes. Some triples of observables are unconstrained. Note that if the vector meson is identified through its decay into two pseudoscalars, such as $\rho\to\pi\pi$ or $\phi\to\mathrm{KK}$, only the *tensor* polarisation is accessed. To get the axial polarisation, one needs other decay modes.

Introduction	Exclusive reactions		Inclusive reactions	Outloo	
			0000000000000000	•0	

Inclusive hadronic reactions

For $a({
m spin}\ 1/2) + b({
m unpolarised}) o c({
m spin}\ 1/2) + X$, then

$$(1 \pm D_{NN})^2 \ge (A_{aN} \pm P_{cN})^2 + (D_{LL} \pm D_{SS})^2 + (D_{LS} \mp D_{SL})^2$$
.

in particular for $\mathrm{p}^{\uparrow}\mathrm{p} \to \Lambda^{\uparrow} X$, $1 \pm D_{NN} \ge |P_{\Lambda} \pm A_{N}|$,

The allowed domain corresponding to the constraints (*left*). The slice of the full domain for $D_{NN} = 0$ (*middle*) and for $D_{NN} = 1/3$ (*right*).

Inclusive reactions

Quark distribution function, Soffer's inequality

Let q(x) be a quark distribution function,

 $q_{\pm}(x)$ the quark distributions of definite helicity,

with $q(x) = q_+(x) + q_-(x)$ and $\Delta q(x) = q_+(x) - q_-(x)$ the usual spin-dependent distribution.

The positivity of each q_{\pm} implies $q(x) \ge \Delta q(x)$.

To construct the transversity distributions, one also needs the non-diagonal term in the helicity basis, δq . ($\delta q = q_{\uparrow} - q_{\downarrow}$ for a N_{\uparrow})

The Soffer inequality

 $[q + \Delta q]/2 \ge \delta q$ can be viewed as in the figure, similar the the triangle inequality on some pairs of observables for $\bar{p}p \rightarrow \bar{\Lambda}\Lambda$.

< ロ > < 同 > < 回 > < 回 >

ntroduction	Exclusive reactions	Inclusive reactions	Outlook
	00000000000000	00	

Outlook

- Rediscovery of the works by Michel, Minnaert, etc., and further development of limits on the domain allowed for spin observables (Artru, Elchikh, Soffer, etc.),
- Constraints useful when a few observables are measured
 - to see whether they are compatible
 - to determine which of the yet unknown observables has the widest range left
- Identities and inequalities on spin observables first derived by algebraic methods
- Better understood from the positivity of the density matrices describing the reaction and the crossed reactions
- Link with the theory of quantum information: a quantum state (initial spin) undergoes a quantum process (scattering), leading to a new state (final state). This is submitted to the usual restrictions, differences between pure and entangled spin states, the increase of entropy, etc.

ヘロト ヘヨト ヘヨト