

## **Strategies for baryon resonance analysis**

M. Döring, C. Hanhart, F. Huang<sup>1</sup>, S. Krewald, U.-G. Meißner

Forschungszentrum Jülich, Uni Bonn, Germany <sup>1</sup>University of Athens, Georgia, USA

#### **Contents**



The Juelich coupled channels approach Poles and background Pion mass dependence High energy limit Outlook



## **Analyticity and Unitarity**

Pole and Non-Pole T-Matrix

$$T = T^P + T^{NP}$$

$$T = \frac{a_{-1}}{Z - Z_0} + a_0 + O(Z - Z_0)$$
$$a_{-1} = \frac{\Gamma_d \Gamma_d^{(\dagger)}}{1 - \frac{\partial}{\partial Z} \Sigma}$$
$$a_0 = T^{NP} + a_0^P$$
$$a_0^P = \frac{a_{-1}}{\Gamma_d \Gamma_d^{(\dagger)}} *$$
$$* \left(\frac{\partial}{\partial Z} (\Gamma_d \Gamma_d^{(\dagger)}) + \frac{a_{-1}}{2} \frac{\partial^2}{\partial Z^2} \Sigma\right)$$











## **Poles and background** $\mathbf{P}_{33}$





Vicinity of Pole:

$$T(Z) \sim \frac{a_{-1}}{Z - Z_0} + T^{NP}(Z)$$

 $T(Z) \sim \frac{a_{-1}}{Z - Z_0} + a_0$ 

## **Second Riemann sheet:** P<sub>33</sub>





 $T^{NP}$ 

 $T^P + T^{NP}$ 

# Toy model I



(1) 
$$\epsilon_{1}^{0} = E_{1} - \frac{i}{2}\Gamma_{1}; \epsilon_{2}^{0} = E_{2} - \frac{i}{2}\Gamma_{2}$$
(2) 
$$h_{11} = \epsilon_{1}^{0}; h_{12} = b$$
(3) 
$$h_{21} = b; h_{22} = \epsilon_{2}^{0}$$
(4) 
$$\epsilon_{1,2} = (\epsilon_{1}^{0} + \epsilon_{2}^{0})/2 \pm D^{\frac{1}{2}}$$
(5) 
$$D = (\epsilon_{1}^{0} - \epsilon_{2}^{0})^{2}/4 + b^{2}$$
(6) 
$$(\epsilon_{1} - \epsilon_{2})/2 = \sqrt{D} = e + ig$$

(7)

Change bare couling  $b \to \overline{b}$ :  $(\overline{\epsilon_1} - \overline{\epsilon_2})^2 - (\epsilon_1 - \epsilon_2)^2 = \overline{e}^2 - e^2 - \overline{g}^2 + g^2 + 2i * (\overline{e}\overline{g} - eg)$ 

# **Toy model II**



Change bare couling:  $b \to \overline{b}$ :  $(\overline{\epsilon_1} - \overline{\epsilon_2})^2 - (\epsilon_1 - \epsilon_2)^2 = \overline{e}^2 - e^2 - \overline{g}^2 + g^2 + 2i * (\overline{e}\overline{g} - eg)$ In case the level shift is real:

 $\bar{e}\bar{g} = eg$  $\bar{e} \le e \to \bar{q} \ge q$ 

Consequence: one level is pushed deep into the complex plane. P.v.Brentano, Phys. Rep.

# Consequences



Warning for theories generating resonances dynamically: Dynamically generated pole interacts with bare resonances Quantitative reproduction of data essential! Focus on model independent quantities. Baz, Perelmov, Zeldovich, 1970 One channel, vicinity of pole  $k_0 = k_1 + ik_2$ :  $S(k) = \frac{(k - k_0^*)(k + k_0)}{(k - k_0)(k + k_0^*)} exp(2i\phi(k))$ Meeting point: Poles, residues, zeroes, branch points. =>Michael Döring

## **Tool: Gauss plot**





- Re[T(z)]=0 Im[T(z)]=0  $\frac{1}{x-iy} = \frac{x+iy}{x^2+y^2}$
- $T^{[2]}(Z) = \frac{a_{-1}(1535)}{Z Z_0(1535)} + \frac{a_{-1}(1650)}{Z Z_0(1650)}$

## **Meeting the lattice**



New techniques in excited mass extraction: Fleming, Cohen, Lin, Pereyra, hep-lat 0903.2314 Meeting point: study pion mass dependence of poles due to final state interaction

## **Pole path**





## **Pion mass dependence**



## **Energies above 2 GeV**



Too much freedom for theorists?? Two-body scattering focusses on forward direction. Study high energy limit.

## **Poles and background D**<sub>33</sub>





Vicinity of Pole:

$$T(Z) \sim \frac{a_{-1}}{Z - Z_0} + T^{NP}(Z)$$

 $T(Z) \sim \frac{a_{-1}}{Z - Z_0} + a_0$ 

# **Amplitudes for charge exchange**







=>Fei Huang

# **Summary**



Jülich Lagrangian model: Analyticity and Unitarity Combined treatment of poles and background  $T = \frac{a_{-1}}{Z - Z_0} + a_0 + O(Z - Z_0)$ 

model independent, good to meet experiment.

$$a_{-1} = \frac{\Gamma_d}{\sqrt{1 - \frac{\partial}{\partial Z}\Sigma}} \frac{\Gamma_d^{(\dagger)}}{\sqrt{1 - \frac{\partial}{\partial Z}\Sigma}}$$

Factorization of residue. Bare vertex  $\Gamma_{bare}$  accessible only in models, differs from dressed vertex. Meet the lattice by pion mass dependence. Poles and residues from Juelich model:Michael Doering

High energy limit: Fei Huang

#### **Poles and residues I**



|                         | $\operatorname{Re} Z_0$ | -2 lm Z <sub>0</sub> | R              | $\theta$ [deg]                               |
|-------------------------|-------------------------|----------------------|----------------|----------------------------------------------|
|                         | [MeV]                   | [MeV]                | [MeV]          | [0]                                          |
| $N^*(1520) D_{13}$      | 1505                    | 95                   | 32             | -18                                          |
| Arndt06                 | 1515                    | 113                  | 38             | -5                                           |
| Hohler93                | 1510                    | 120                  | 32             | -8                                           |
| Cutkosky79              | $1510\pm5$              | <b>114</b> ±10       | <b>35</b> ±2   | -12±5                                        |
| $\Delta(1232) P_{33}$   | 1218                    | 90                   | 47             | -37                                          |
| Arndt06                 | 1211                    | 99                   | 52             | -47                                          |
| Hohler93                | 1209                    | 100                  | 50             | -48                                          |
| Cutkosky79              | <b>1210</b> ±1          | <b>100</b> ±2        | <b>53</b> ±2   | -47±1                                        |
| $\Delta^*(1700) D_{33}$ | 1637                    | 236                  | 16             | -38                                          |
| Arndt06                 | 1632                    | 253                  | 18             | -40                                          |
| Hohler93                | 1651                    | 159                  | 10             |                                              |
| Cutkosky79              | <b>1675</b> ±25         | <b>220</b> ±40       | <b>13</b> ±3 , | NSTAR 2009, Beijin 252 April 2009 – p. 17/21 |

#### **Poles and residues II**



|                    | $\operatorname{Re} Z_0$ | -2 lm Z <sub>0</sub> | R              | $\theta$ [deg]                                  |
|--------------------|-------------------------|----------------------|----------------|-------------------------------------------------|
|                    | [MeV]                   | [MeV]                | [MeV]          | <b>[</b> <sup>0</sup> <b>]</b>                  |
| $N^*(1535) S_{11}$ | 1519                    | 129                  | 31             | -3                                              |
| Arndt06            | 1502                    | 95                   | 16             | -16                                             |
| Hohler93           | 1487                    |                      |                |                                                 |
| Cutkosky79         | $1510 \pm 50$           | <b>260</b> ±80       | <b>120</b> ±40 | +15±45                                          |
| $N^*(1650) S_{11}$ | 1669                    | 136                  | 54             | -44                                             |
| Arndt06            | 1648                    | 80                   | 14             | -69                                             |
| Hohler93           | 1670                    | 163                  | 39             | -37                                             |
| Cutkosky79         | <b>1640</b> ±20         | <b>150</b> ±30       | <b>60</b> ±10  | -75±25                                          |
| $N^*(1440) P_{11}$ | 1387                    | 147                  | 48             | -64                                             |
| Arndt06            | 1359                    | 162                  | 38             | -98                                             |
| Hohler93           | 1385                    | 164                  | 40             |                                                 |
| Cutkosky79         | <b>1375</b> ±30         | <b>180</b> ±40       | <b>52</b> ±5   | NSTAR 2009, BOI ing, 1925, pril 2009 - p. 18/21 |

#### **Poles and residues III**



|                         | $\operatorname{Re} Z_0$ | -2 lm Z <sub>0</sub> | R            | $\theta$ [deg]   |
|-------------------------|-------------------------|----------------------|--------------|------------------|
|                         | [MeV]                   | [MeV]                | [MeV]        | [ <sup>0</sup> ] |
| $\Delta^*(1620) S_{31}$ | 1593                    | 72                   | 12           | -108             |
| Arndt06                 | 1595                    | 135                  | 15           | -92              |
| Hohler93                | 1608                    | 116                  | 19           | -95              |
| Cutkosky79              | <b>1600</b> $\pm 15$    | <b>120</b> ±20       | <b>15</b> ±2 | -110±20          |
| $\Delta^*(1910) P_{31}$ | 1840                    | 221                  | 45           | -153             |
| Arndt06                 | 1771                    | 479                  | 38           | +172             |
| Hohler93                | 1874                    | 283                  | 19           |                  |
| Cutkosky79              | <b>1880</b> ±30         | <b>200</b> ±40       | <b>20</b> ±4 | <b>-</b> 90±30   |
| $N^*(1720) P_{13}$      | 1663                    | 212                  | 14           | -82              |
| Arndt06                 | 1666                    | 355                  | 25           | -94              |
| Hohler93                | 1686                    | 187                  | 15           |                  |
| Cutkosky79              | <b>1680</b> ±30         | <b>120</b> ±40       | <b>8</b> ±12 | NSTAL 690 - p.1  |

# Background

|                         | $T^{\mathrm{NP}}$ | $a_0^{\mathrm{P}}$ | Ratio |
|-------------------------|-------------------|--------------------|-------|
| $N^*(1440) P_{11}$      | 15.3 - 7.60i      | -10.9 + 7.92i      | 0.26  |
| $\Delta^*(1620) S_{31}$ | 9.01 - 6.37i      | -1.21 + 0.24i      | 0.9   |
| $\Delta^*(1910) P_{31}$ | 4.58 - 2.76i      | -0.78 + 0.24       | 0.9   |
| $N^*(1720) P_{13}$      | 1.76 - 0.10i      | 0.45 - 0.56i       | 1.3   |
| $N^*(1520) D_{13}$      | -4.62 - 0.56i     | 3.03 + 1.23i       | 0.4   |
| $\Delta(1232) P_{33}$   | -16.7 - 3.57i     | 17.1 + 10.6i       | 0.4   |
| $\Delta^*(1700) D_{33}$ | 0.80 - 0.52i      | 0.40 + 0.11i       | 1.3   |

#### The high energy limit: Regge theory schungszentrum Jülich In der Helmholtz-Gemeinschaft

 $A(s,t) \rightarrow \frac{1+exp(-i\pi\alpha)}{2sin(\pi\alpha)}\phi(t)s^{\alpha}$   $\alpha(t) = \alpha(0) + \alpha't; \alpha(0) = 0.55; \alpha' = 0.86GeV^{-2}$ Regge trajectory:  $l = \alpha(t = M^2)$ Phenomenology: $\phi(t) = \beta_0 exp(bt)$ Analytical structure:

$$\phi(t) = \frac{\Phi(t)}{\Gamma(\alpha)}$$

Euler products:

$$sin(\pi\alpha) = \alpha * (1 - 1\alpha)(1 + 1\alpha) * \dots$$
$$\frac{1}{\Gamma(\alpha)} = \alpha exp(\gamma\alpha) * (1 + \frac{\alpha}{1})exp(-\frac{\alpha}{1}) * \dots$$
rescale:

 $\beta_0 exp(bt) \rightarrow exp((\gamma - a)\alpha)exp(-\frac{\alpha}{2}...$ All unphysical singularities manifestly cancelled.