Complementary studies on N* from e⁺e⁻, pp and pp collisions

Bing-Song Zou

Institute of High Energy Physics, CAS, Beijing & Theoretical Physics Center for Science Facilties, CAS

Outline:

- Introduction
- N* from $e^+e^- \rightarrow \psi \rightarrow \bar{N} N^*$
- N* from $pp \rightarrow N N^*$
- N* from $\overline{pp} \rightarrow \overline{N} N^*$
- Summary and Prospects

1. Introduction

Two well-known problems for the classical 3q model

• Mass order reverse problem for the lowest excited baryons

uud (L=1) $\frac{1}{2}$ - ~ N*(1535)should be the lowestuud (n=1) $\frac{1}{2}$ + ~ N*(1440)uds (L=1) $\frac{1}{2}$ - ~ Λ *(1405)

harmonic oscillator $(2n + L + 3/2)h\omega$

• The number of predicted states is much less than observed "missing" baryon states : non-existence / to be observed ?

A new scheme to explain the mass reverse problem

A.Zhang et al, HEPNP29(2005)250 ; B.S.Zou, EPJA35(2008)325

- $N^{*}(1535) \sim uud (L=1) + \varepsilon [ud][us] \overline{s} + ...$
- $N^{*}(1440) \sim uud (n=1) + \xi [ud][ud] d + ...$
- $\Lambda^{*}(1405) \sim uds (L=1) + \varepsilon [ud][su] u + ...$

N*(1535): [ud][us] s → larger coupling to Nη, Nη', Nφ & KΛ, weaker to Nπ & KΣ, and heavier !

The new picture for the 1/2⁻ nonet predicts:

- Λ^* [us][ds] s ~ 1575 MeV
- Σ^* [us][du] \overline{d} ~ 1360 MeV
- Ξ^* [us][ds] \overline{u} ~ 1520 MeV

Where to look for "missing" baryon states ?

High statistics **yp** and **Kp** experiments

+ e⁺e⁻, pp & pp experiments

2. N* from $e^+e^- \rightarrow \psi \rightarrow \overline{N} N^*$

$$\Psi \rightarrow BBM \implies N^*, \Lambda^*, \Sigma^*, \Xi^*$$

New mechanism for baryon production & an ideal isospin filter

1) N* in $\psi \rightarrow pn\pi^+ \& n \pi^- p$ $J/\psi \rightarrow pn\pi^+ \& n\pi^-p$

V. Burkert

Observation of two new N* peaks in πN mass spectrum BES, Phys.Rev.Lett.97(2006)062001

The new N*(2065) peak in π N mass spectrum

 $M = 2068 \pm 3^{+15}_{-40} \text{ MeV/c}^2, \Gamma = 165 \pm 14 \pm 40 \text{ MeV/c}^2$

 $J/\psi \rightarrow n N^*(2065)$ with L=0 (small excess energy) limits its J^P to be 3/2⁺ or 1/2⁺ (spin filter)

PWA with event-based Maximum-Likelihood method → Both 3/2⁺ and 1/2⁺ are there.

 $\psi(2S) \rightarrow p\pi^{-}\overline{n} + c.c.$

BES, Phys. Rev. D74, 012004 (2006)

Clear N*(1440) peak and evidence for N* above 2 GeV

2) N* in $\psi \rightarrow \overline{\Lambda} K N$ N* in $J/\psi \rightarrow p K^{-} \overline{\Lambda} + c.c.$

a) Assuming N_x to be purely N*(1535) : B.C. Liu, B.S. Zou, PRL96 (2006) 042002; PRL98 (2007) 039102

> From relative branching ratios of $J/\psi \rightarrow p \ N^* \rightarrow p \ (K^- \ \Lambda) / p \ (p\eta)$ $g_{N^*K\Lambda}/g_{N^*p\eta}/g_{N^*N\pi} \sim 2:2:1$

 b) N_x as dynamical generated with unitary chiral theory: N*(1535) + non-resonant part L.S.Geng, E.Oset, B.S. Zou, M.Doring, PRC79 (2009) 025203

 $g_{N*K\Lambda}/g_{N*p\eta}/g_{N*N\pi} \sim 1.2:2:1$

Phenomenology : Large $g_{N^*K\Lambda} \rightarrow large \ ss \ in \ N^*(1535)$ $\overline{s[su][ud]} \ or \ K\Lambda-K\Sigma \ state$

Many more channels: $J/\psi \rightarrow pp\eta$: Phys. Lett. B510 (2001) 75 $J/\psi \rightarrow \Lambda K_{s}n$: Phys. Lett. B659 (2008) 789 $J/\psi \rightarrow pp\omega$: Eur. Phys. J. C53 (2008) 15 $J/\psi \rightarrow pp\pi^{0}$: Hongxun Yang's talk $\psi(2S) \rightarrow pp\pi^{0}$, $pp\eta$: Phys. Rev. D71 (2005) 072006

J/ψ decay branching ratios (BR*10³)

BES3 :	10 ⁸ ~	ν 10 ⁹ ψ	v(3686) &	$10^9 \sim 10^{10}$	J/ψ(3097
1.1 ± 0.1	0.9 ± 0.2	0.3 ± 0.1	0.045 ± 0.015	1.6 ± 0.5	0.51 ± 0.32
$\Lambda\bar{\Sigma}^-\pi^+$	$pK^-\bar{\Lambda}$	$pK^- \bar{\Sigma}^0$	$ar{p}p\phi$	$\Delta(1232)^{++}\bar{p}\pi^{-}$	$pK^{-}\bar{\Sigma}(1385)^{0}$
2.4 ± 0.2	1.1 ± 0.1	6.0 ± 0.5	2.1 ± 0.2	0.9 ± 0.4	1.3 ± 0.3
$p\bar{n}\pi^-$	$p\bar{p}\pi^0$	$p\bar{p}\pi^+\pi^-$	$p \bar{p} \eta$	$p\bar{p}\eta'$	$p\bar{p}\omega$

N* ~ 2740 MeV, Λ* ~ 2570MeV, Σ* ~ 2490 MeV, Ξ* ~ 2360 MeV 3. N* from $pp \rightarrow N N^*$

complimentary e⁺e⁻ and pp experiments

 $\psi \rightarrow P K^- \overline{\Lambda} \text{ vs } P P \rightarrow P K^+ \Lambda$

P $\overline{\Lambda}$ & **P** Λ the same t-channel interaction

K⁻ $\overline{\Lambda}$ & **K**⁺ Λ the same interaction

P K⁻ for Λ^* **P** K⁺ for pentaquarks

Evidence for large $g_{N^*(1535)K\Lambda}$ from pp \rightarrow p K⁺ Λ

Total cross section and theoretical results with N*(1535), N*(1650), N*(1710), N*(1720) B.C.Liu, B.S.Zou, Phys. Rev. Lett. 96 (2006) 042002

Tsushima, Sibirtsev, Thomas, PRC59 (1999) 369, without including N*(1535)

FSI vs N*(1535) contribution in pp \rightarrow p K⁺ Λ

B.C.Liu & B.S.Zou, Phys. Rev. Lett. 98 (2007) 039102 (reply) A.Sibirtsev et al., Phys. Rev. Lett. 98 (2007) 039101 (comment)

N*(1440) in pp \rightarrow pn π^+ , consistent with J/ $\psi \rightarrow$ pn π^+ CELSIUS-WASA Collaboration, nucl-ex/0612015

Figure 2: Invariant mass spectra $M_{p\pi^+}$ and $M_{n\pi^+}$ obtained from the measurement of the $pp \rightarrow np\pi^+$ reaction at $T_p = 1300$ MeV. The shaded areas show the pure phase space distributions, whereas the dashed lines show calculations assuming BW shapes for both the Δ^{++} and the Roper excitation [19].

Higher energies and Dalitz plots are needed at COSY&CSR !

Theoretical study on $pp \rightarrow pn\pi^+$

Z.Ouyang, J.J.Xie, B.S.Zou &H.S.Xu, Nucl. Phys. A 821(2009)220; IJMPE(2009)

Including N*(1440) by σ exchange is crucial to reproduce data

Prediction for pp \rightarrow **pn** π^+ at T_p=2.88 GeV

to be checked by COSY&CSR

Juelich 2008 annal report

$pp \rightarrow nK^+\Sigma^+$: the best place for $\rho^+p \rightarrow \Delta^{*++}$ (uuu)

J.J.Xie & B.S.Zou, Phys. Lett. B649 (2007) 405

Δ*++ (uuu) -- the most accessible system with 3 identical valence quarks
 -- our present knowledge from π+p data is still very poor
 -- accessible at COSY and CSR

Status on the study of $pp \rightarrow nK^+\Sigma^+$

T. Rożek et al. / Physics Letters B 643 (2006) 251–256

Incohenrent π/K exchange model also fails to reproduce these data A. Sibirtsev, et al., Nucl. Phys. A 646 (1999) 427.

Our calculation for $pp \rightarrow nK^+\Sigma^+$

Figure 1: Feynman diagrams for $pp \rightarrow nK^+\Sigma^+$ reaction.

t-channel p-exchange plays important role !

Dalitz plot and projections: predictions to be checked by COSY&CSR

Figure 3: The Dalitz Plot and invariant mass spectra for the $pp \rightarrow nK^+\Sigma^+$ at T_P=2.8GeV, compared with pure phase space distributions (dashed curves)

4. N* from $pp \rightarrow NN^*$

$T_b \sim 2GeV$	рр	VS	рр
σ_{tot} (mb)	50		90
σ _{el} (mb)	25		35
$\sigma_{pn\pi+}$ (mb)	15		10

All final states of e⁺e⁻ are accessible by pp A large portion of pp final states contain baryons & should not be wasted at PANDA/FAIR

$pp \rightarrow pn\pi^+$: the best place for studying N*(1440) and other N* - Nσ J.J.Wu, Z.Ouyang, B.S.Zou, ArXiv: 0902.2295 [hep-ph]

5. Summary and Prospects

1) ψ decays : a nice filter for N*, Δ *, Λ *, Σ *, Ξ *

BES3: $10^8 \sim 10^9 \psi(3686)$ & $10^9 \sim 10^{10} J/\psi(3097)$ Many new baryon resonances should be observed !

2) pp : nice place for $\rho^+ p \rightarrow \Delta^{*++} \& \sigma p \rightarrow N^*$

Important for HPLUS/CSR to continue the effort at COSY

3) pp : best place for $\sigma p \rightarrow N^*$ & maybe Ω^*

PANDA should also play important role on baryon spectroscopy.

+ γp at CEBAF, ELSA, Spring-8 + Kp at JPARC + ...

new era of baryon spectroscopy

Atomic Spectroscopy \Rightarrow Atomic Quantum Theory Nuclear Spectroscopy \Rightarrow Shell Model & Collective motion Model Baryon Spectroscopy \Rightarrow ? Important discoveries

Thanks !