Analysis of Λ_c baryons

Bing Chen, Deng-Xia Wang and Ai-Lin Zhang Department of Physics, Shanghai University, China

• Diquark

- Mass loaded flux tube model
- Classification of Λ_c baryons
- Conclusions and discussions

Diquark qq

Quarks/antiquarks in hadron containing more than 3 quarks may have complicated correlations and form different clusters Diquarks were first mentioned by Gell-Mann M. Gell-Mann, Phys. Lett. **8**, 214 (1964)

Two quark correlation

Two quarks will attract each other and make up a diquark when the two quarks are in an antisymmetric color representation

Point particle?

Wave function

 $|hadron\rangle = |color\rangle \times |spin\rangle \times |flavor\rangle \times |spatial\rangle$

Baryons: antisymmetric

The symmetry of the spatial part: parity

$$|diquark\rangle = |color\rangle \times |spin\rangle \times |flavor\rangle$$

Diquark: antisymmetric, color antisymmetric

• Color

|color
angle: $\bar{3}_c$, antisymmetric

• Spin

$$|spin
angle$$
: $\overline{1}_s$, antisymmetric, $S=0$

$$spin$$
: 3_s , symmetric, $S = 1$

• Flavor

$$flavor$$
: $\bar{3}_f$, antisymmetric, $I = 0$

$$|flavor\rangle$$
: 6_f, symmetric, $I = 1$

IHEP, April 19, 2009

c: color

s: spin

♠ Good diquark

Good diquark [qq]: antisymmetric, $|\bar{3}_c, \bar{1}_s, \bar{3}_f\rangle$, scalar

Bad diquark (qq): antisymmetric, $|\bar{3}_c, 3_s, 6_f\rangle$, vector

♠ Baryons

quark + diquark

🔶 Idea

Alexander Selem and Frank Wilczek, hep-ph/0602128, Ringberg 2005, New trends in HERA physics, 337-356

Two masses m_1 and m_2 are connected by a flux tube or relativistic string with constant tension T rotaing with angular momentum L. The flux tube or string is responsible for the color confinement

Meson: quark m_1 and anti-quark m_2 Baryon: quark m_1 and diquark m_2 The energy of the system

$$E = m_1 \gamma_1 + m_2 \gamma_2 + \frac{T}{\omega} \int_0^{\omega r_1} \frac{1}{\sqrt{1 - u^2}} du + \frac{T}{\omega} \int_0^{\omega r_2} \frac{1}{\sqrt{1 - u^2}} du$$

The angular momentum of the system

$$L = m_1 \omega r_1^2 \gamma_1 + m_2 \omega r_2^2 \gamma_2 + \frac{T}{\omega^2} \int_0^{\omega r_1} \frac{u^2}{\sqrt{1 - u^2}} du + \frac{T}{\omega^2} \int_0^{\omega r_2} \frac{u^2}{\sqrt{1 - u^2}} du$$

 ω , r_i and γ_i are parameters in the model

The energy of the heavy-light systems

$$E = M + \sqrt{\frac{\sigma L}{2}} + 2^{\frac{1}{4}} \kappa L^{-\frac{1}{4}} m^{\frac{3}{2}}, \qquad ($$

with $\kappa = \frac{2}{3} \frac{\pi^{\frac{1}{2}}}{\sigma^{\frac{1}{4}}}$

M: heavy quark mass; m: light quark/diquark mass

Their results on Λ_c baryons

\overline{L}	$J^P({\sf theory})$	$J^P(PDG)$	Mass(expt.)
1	$\frac{1}{2}^{-}$	$\frac{1}{2}^{-}$	$\Lambda_c(2595)^+$
1	$\frac{3}{2}^{-}$	$\frac{3}{2}^{-}$	$\Lambda_c(2625)^+$
2	$\frac{5}{2}^+$	$\frac{5}{2}^{+}$	$\Lambda_c(2880)^+$

Tab. 1: Parameters: $m_c = 1.6 \text{ GeV}$, $m_{qq} = 0.18 \text{ MeV}$, $\sigma = 0.974 \text{ GeV}^2$.

Spin-orbit forces were ignored!

Contributions of spin-orbit interactions are large!

Energy splitting resulting from spin-orbit interactions is comparable to the energy gap resulting from different orbit

Hong-Yun Shan and Ailin Zhang, D and D_s in mass loaded flux tube, arXiv: 0805.4764 [hep-ph]

$$E = M + \sqrt{\frac{\sigma L}{2}} + 2^{\frac{1}{4}} \kappa L^{-\frac{1}{4}} m^{\frac{3}{2}} + a\vec{L} \cdot \vec{S}$$
 (2)

Classification of Λ_c **baryons**

Baryons made from u, d, s, and c quarks belong to SU(4) multiplets

$$SU(4)$$
 multiplets: $4 \times 4 \times 4 = 20 + 20'_1 + 20'_2 + \overline{4}$

 Λ_c : I = 0

 Λ_c baryons picture: u and d quark is in [ud](good diquark) configuration, the good diquark and the c quark locate at the ends of the flux tube

The lightest Λ_c^+ : $J^P = \frac{1}{2}^+$, $m = 2286.46 \pm 0.14$ MeV. The spin J has not actually been measured

Spectrum of excited Λ_c baryons(MeV):

\overline{L}	$J^P({\sf theory})$	$J^P(PDG)$	Mass(theory)	Mass(expt.)
1	$\frac{1}{2}^{-}$	$\frac{1}{2}^{-}$	2584	$\Lambda_c(2595)^+$
1	$\frac{3}{2}^{-}$	$\frac{3}{2}^{-}$	2644	$\Lambda_c(2625)^+$
2	$\frac{\overline{3}}{2}^+$??	2772	$\Lambda_c(2765)^+$
2	$\frac{1}{2} + \frac{1}{2}$	$\frac{5}{2}^{+}$	2872	$\Lambda_c(2880)^+$
3	$\frac{1}{2}$??	2935	$\Lambda_c(2940)^+$
3	$\frac{1}{2}^{-}$??	3076	?

Tab. 2: Parameters: $m_c = 1.39$ GeV, $m_{qq} = 0.521$ MeV, $\sigma = 0.999$ GeV² and a = 40 MeV. PDG: Amsler C, *et al.* (Particle Data Group), Phys. Lett. B667, 1 (2008).

The minimum of mean square error of the mass of the Λ_c : $\Lambda_c(2595)^+$, $\Lambda_c(2625)^+$, $\Lambda_c(2880)^+$, $\Lambda_c(2940)^+$

Parameters:

 $m_c=1.39~{
m GeV}$,

 $m_{qq} = 0.521$ MeV: comparable with other predictions

 $\sigma = 0.999 \text{ GeV}^2$:

 $a=40~{\rm MeV}$

Few of the $J^{\cal P}$ quantum numbers given in PDG have been measured

Classification:

$\label{eq:lambda} \begin{tabular}{l} $ \Lambda_c(2765)^+$ \\ $ \Lambda_c(2765)$ or $ \Sigma_c(2765)$? \\ $ \mbox{If $ \Lambda_c(2765)$, its $ J^P$: $ \frac{3^+}{2}$ \\ $ \mbox{If $ \Sigma_c(2765)$, another $ \Lambda_c$ with $ J^P = \frac{3^+}{2}$ and $ mass ≈ 2770 MeV } $ \end{tabular}$

• $\Lambda_c(2940)^+$ Its $J^P: \frac{5}{2}^-$ Prediction: • $\Lambda_c(3076)^+$? The mass difference among different orbits(with spin-orbit interactions ignored)

$$E(L = 2) - E(L = 1) = 209 MeV,$$

 $E(L = 3) - E(L = 2) = 182 MeV,$
 $E(L = 4) - E(L = 3) = 162 MeV$

The mass splitting resulting from the spin-orbit interactions in the same orbit

$$\begin{split} E(L=1;\frac{3}{2}^{-}) - E(L=1;\frac{1}{2}^{-}) &= 30 \quad MeV, \\ E(L=2;\frac{5}{2}^{+}) - E(L=2;\frac{3}{2}^{+}) &= 115 \quad MeV, \\ E(L=3;\frac{7}{2}^{-}) - E(L=3;\frac{5}{2}^{-}) &= 141 \quad MeV \end{split}$$

IHEP, April 19, 2009

Ailin-Zhang, Shanghai University 16/20

Spin-orbit interactions are large for higher excited Λ_c

They should be taken into account!

Conclusions and discussions

- Diquark is a good approximation for Λ_c baryons!
- The dynamics of Λ_c baryons is well described by the mass loaded flux tube!
- J^P of some Λ_c baryons are assigned!
- Theoretical and Experimental explorations required!

Thank you!