Bonn-Gatchina partial wave analysis

A. Sarantsev

HISKP, Uni-Bonn (Bonn) and PNPI (Gatchina)

The Δ^* - states

 \Leftrightarrow Additional experimental information needed !!

Problems in the baryon spectroscopy and/or quark model:

- 1. Problem: The number of predicted three quark states exceeds dramatically the number of discovered baryons.
- Possible solution: Most of the information comes from the analysis of meson induced reactions and meson-baryon final states. Photoproduction data taken by CLAS, GRAAL, LEPS and CB-ELSA can provide an important information about missing states.
 - (a) problem: The unambiguous analysis of photoproduction reactions can not be done without polarization information available.
 - (b) problem: Signals in simple reactions are expected to be mostly weak. Strong signals from new resonances can be found in multi-meson final states.
 - (c) Possible solution 1: The single polarization observables are measured now by almost all collaborations. In the nearest future single and double polarization data will be available from CLAS and CB-ELSA.
 - (d) **Possible solution 2:** A combined analysis of the large data sets.

The fitted reactions. Recently	included data	sets. New	points added
--------------------------------	---------------	-----------	--------------

Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$	
$\sigma(\gamma \mathrm{p} \!\rightarrow\! \mathrm{p} \pi^0)$	1106	1.27	CB-ELSA	$\sigma(\gamma \mathrm{p} \!\rightarrow\! \mathrm{p} \pi^0)$	861	1.74	GRAAL
$\sigma(\frac{3}{2}-\frac{1}{2})(p\pi^0)$	140	1.41	A2GDH	$\Sigma(\gamma \mathrm{p} \! ightarrow \! \mathrm{p} \pi^0)$	1492	3.38	SAID
${ m P}(\gamma { m p}\! ightarrow\!{ m p}\pi^0)$	607	3.16	SAID	$T(\gamma p \rightarrow p \pi^0)$	389	4.01	SAID
${ m H}(\gamma { m p}{ m m o}{ m p}\pi^0)$	71	1.92	SAID	$ m G(\gamma p \! ightarrow \! p \pi^0)$	75	2.58	SAID
$Ox(\gamma p \rightarrow p \pi^0)$	7	1.01	SAID	$Oz(\gamma p \rightarrow p\pi^0)$	7	0.38	SAID
$\overline{\sigma(\gamma \mathbf{p} \rightarrow \mathbf{n} \pi^+)}$	1583	1.87	SAID	$\sigma(\gamma \mathrm{p} \!\rightarrow\! \mathrm{n} \pi^+)$	408	2.09	A2GDH
$\Sigma(\gamma \mathrm{p} \rightarrow \mathrm{n}\pi^+)$	899	4.23	SAID	$\sigma(\frac{3}{2}-\frac{1}{2})(n\pi^{+})$) 231	2.49	A2GDH
$P(\gamma p \rightarrow n\pi^+)$	252	3.90	SAID	$T(\gamma p \rightarrow n\pi^+)$	661	3.66	SAID
${ m H}(\gamma { m p}{ m ightarrow}{ m p}\pi^0)$	71	1.92	SAID	$G(\gamma p \rightarrow p \pi^0)$	75	2.58	SAID
$\overline{S_{11}(\pi N \rightarrow \pi N)}$	126	1.40	SAID	$P_{11}(\pi N \rightarrow \pi N)$	110	2.24	SAID
$P_{13}(\pi N \rightarrow \pi N)$) 108	2.57	SAID	$P_{33}(\pi N \rightarrow \pi N)$	130	5.01	SAID
$D_{33}(\pi N \rightarrow \pi N)$) 136	4.01	SAID				
$\overline{\sigma(\gamma \mathbf{p} \rightarrow \mathbf{p} \eta)}$	667	0.92	CB-ELSA	$\sigma(\gamma \mathbf{p} \rightarrow \mathbf{p} \eta)$	100	2.72	TAPS
$\Sigma(\gamma \mathrm{p} \! \rightarrow \! \mathrm{p} \eta)$	51	2.06	GRAAL 98	$\Sigma(\gamma \mathrm{p} \rightarrow \mathrm{p} \eta)$	100	2.01	GRAAL 04
$T(\gamma \mathrm{p} \! ightarrow \! \mathrm{p} \eta)$	50	1.52	Phoenics	$\sigma(\pi^- p \!\rightarrow\! n\eta)$	288	2.76	CBALL+Richards

The fitted reactions. Recently included data sets.

Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$		Observable	$N_{\rm data}$	$\frac{\chi^2}{N_{\rm data}}$	
$C_x(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	160	1.22	CLAS	$C_x(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^+)$	94	2.29	CLAS
$C_z(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	160	1.53	CLAS	$C_z(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^+)$	94	2.19	CLAS
$\sigma(\gamma \mathrm{p} \! \rightarrow \! \Lambda \mathrm{K}^+)$	1377	1.70	CLAS	$\sigma(\gamma \mathbf{p} \rightarrow \Sigma^0 \mathbf{K}^+)$	1280	1.95	CLAS
$P(\gamma p \rightarrow \Lambda K^+)$	202	2.23	CLAS	$P(\gamma p \rightarrow \Sigma^0 K^+)$	95	1.56	CLAS
$\Sigma(\gamma \mathrm{p} \! \rightarrow \! \Lambda \mathrm{K}^+)$	66	2.11	GRAAL	$\Sigma(\gamma p \rightarrow \Sigma^0 K^+)$	42	0.67	GRAAL
$\Sigma(\gamma \mathrm{p} \! \rightarrow \! \Lambda \mathrm{K}^+)$	45	1.75	LEP	$\Sigma(\gamma p \rightarrow \Sigma^0 K^+)$	45	1.03	LEP
${ m T}(\gamma { m p}\! ightarrow\!\Lambda { m K}^+)$	66	2.11	GRAAL	$\sigma(\gamma \mathbf{p} \rightarrow \Sigma^+ \mathbf{K}^0)$	48	3.36	CLAS
$Ox(\gamma \mathrm{p} \rightarrow \Lambda \mathrm{K}^+)$	66	1.40	GRAAL	$\sigma(\gamma \mathbf{p} \rightarrow \Sigma^+ \mathbf{K}^0)$	160	0.95	CB-ELSA
$Oz(\gamma \mathrm{p} \! \rightarrow \! \Lambda \mathrm{K}^+)$	66	1.86	GRAAL	$P(\gamma p \rightarrow \Sigma^+ K^0)$	72	0.72	CB-ELSA
$\sigma(\gamma p \rightarrow p \pi^0 \pi^0)$	CB-I	ELSA (1	.4 GeV)	$E(\gamma p \rightarrow p \pi^0 \pi^0)$	16	2.08	ΜΑΜΙ
$\sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\eta)$	CB-I	ELSA (3	.2 GeV)	$\Sigma(\gamma \mathrm{p} \! ightarrow \! \mathrm{p} \pi^0 \eta)$	180	2.68	GRAAL
$\sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\pi^{0}\pi^{0}$)	CB-I	ELSA (3	.2 GeV)	$\Sigma(\gamma \mathrm{p} \! ightarrow \! \mathrm{p} \pi^0 \pi^0)$	128	0.85	GRAAL

Combined analysis of the different reactions:

$$BW = \frac{g_i g_j}{M^2 - s - i \sum_k g_k^2 \rho_k},$$
$$M\Gamma = \sum_k g_k^2 \rho_k$$

$$g_k = g_{\pi N}, g_{\gamma N}, g_{\pi \pi N}, \dots$$

The resonance amplitudes for meson photoproduction

The general form of the angular dependent part of the amplitude:

$$\bar{u}(q_1)\tilde{N}_{\alpha_1\dots\alpha_n}(R_2 \to \mu N)F^{\alpha_1\dots\alpha_n}_{\beta_1\dots\beta_n}(q_1+q_2)\tilde{N}^{(j)\beta_1\dots\beta_n}_{\gamma_1\dots\gamma_m}(R_1 \to \mu R_2)$$
$$F^{\gamma_1\dots\gamma_m}_{\xi_1\dots\xi_m}(P)V^{(i)\mu}_{\xi_1\dots\xi_m}(R_1 \to \gamma N)u(k_1)\varepsilon_\mu$$

$$F^{\mu_1\dots\mu_L}_{\nu_1\dots\nu_L}(p) = (m+\hat{p})O^{\mu_1\dots\mu_L}_{\alpha_1\dots\alpha_L}\frac{L+1}{2L+1} \quad g^{\perp}_{\alpha_1\beta_1} - \frac{L}{L+1}\sigma_{\alpha_1\beta_1} \quad \prod_{i=2}^L g_{\alpha_i\beta_i}O^{\beta_1\dots\beta_L}_{\nu_1\dots\nu_L}$$
$$\sigma_{\alpha_i\alpha_j} = \frac{1}{2}(\gamma_{\alpha_i}\gamma_{\alpha_j} - \gamma_{\alpha_j}\gamma_{\alpha_i})$$

The Reggezied t- and u- channel exchanges can be projected to the s-channel.

$$J_{\mu} = i\mathcal{F}_1\sigma_{\mu} + \mathcal{F}_2(\vec{\sigma}\vec{q})\frac{\varepsilon_{\mu ij}\sigma_i k_j}{|\vec{k}||\vec{q}|} + i\mathcal{F}_3\frac{(\vec{\sigma}\vec{k})}{|\vec{k}||\vec{q}|}q_{\mu} + i\mathcal{F}_4\frac{(\vec{\sigma}\vec{q})}{\vec{q}^2}q_{\mu}$$

the multipoles can be reconstructed as:

$$\begin{split} E_n^+ &= \frac{1}{n+1} \int \frac{dz}{2} \quad \mathcal{F}_1 P_n(z) - \mathcal{F}_2 P_{n+1}(z) + \mathcal{F}_3 \frac{1-z^2}{(n+1)} P'_n(z) + \mathcal{F}_4 \frac{1-z^2}{(n+2)} P'_{n+1}(z) \\ M_n^+ &= \frac{1}{n+1} \int \frac{dz}{2} \quad \mathcal{F}_1 P_n(z) - \mathcal{F}_2 P_{n+1}(z) - \mathcal{F}_3 \frac{1-z^2}{n(n+1)} P'_n(z) \\ E_n^- &= \int \frac{dz}{2} \frac{(n+1)^2(n+2)}{2n+1} \left[-\mathcal{F}_1 P_{n+1}(z) + \mathcal{F}_2 P_n(z) \right] + \\ \int \frac{dz}{2} \frac{2(2n-1)(1-z^2)}{(2n+1)(2n-3)} \quad \mathcal{F}_3 P'_{n+1}(z) + \frac{(n+2)}{n(2n-3)} \mathcal{F}_4 P'_n(z) \\ M_n^- &= \int \frac{dz}{2} \frac{(n+1)^2(n+2)}{2n+1} \quad \mathcal{F}_1 P_{n+1}(z) - \mathcal{F}_2 P_n(z) + \frac{(1-z^2)}{(2n+1)} \mathcal{F}_3 P'_{n+1}(z) \end{split}$$

$\gamma p \rightarrow \pi^0 p$ from Crystal Barrel at ELSA ($E_{\gamma} \leq 3.2$ GeV)

 $\Delta(1232)P_{33}$ $N(1520)D_{13} S_{11}$ $N(1680)F_{15}$ $\Delta(1700)D_{33}$ $\Delta(1920)P_{33}$

Non-resonance contributi-

on:

t-channel $\rho-\omega$ exchange, u-exchange and non-resonance production in $J^P=3/2^+ \ {\rm wave}$

The multipoles for single pion production. Red - real part, Blue - imaginary part. Solid curves BoGa -solution, dashed curves - SAID solution, dotted - MAID 2009.

The multipoles for single pion production. Red - real part, Blue - imaginary part. Solid

$\gamma p ightarrow \eta p$ from Crystal Barrel at ELSA ($E_{\gamma} \leq 3.2$ GeV)

Main resonance contribu-

tions: $N(1535)S_{11}$ $N(1650)S_{11}$ $N(1720)P_{13}$ new $N(2070)D_{15}$

Non-resonance contribution: reggezied t-channel $\rho - \omega$ exchange.

No evidence for third $N(1800)S_{11}$

The data on $\pi^- p \to \eta n$ and the target asymmetry $\gamma p \to \eta p$ fix the position and couplings of $P_{11}(1710)$ state and reduce ηN coupling of the $P_{13}(1720)$ state.

Observable $N_{\rm data}$	$rac{\chi^2}{N_{ m data}}$		Observable $N_{\rm data}$	$rac{\chi^2}{N_{ m data}}$	
$\sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\eta)$ 667	0.92 (0.85)	CB-ELSA	$\sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\eta)$ 100	2.72 (1.97)	TAPS
$\Sigma(\gamma \mathrm{p}\! ightarrow\!\mathrm{p}\eta)$ 51	2.06 (1.81)	GRAAL 98	$\Sigma(\gamma\mathrm{p}\! ightarrow\!\mathrm{p}\eta)$ 100	2.01 (1.43)	GRAAL 04

T-matrix poles: $M = 1371 \pm 7$ MeV, $2 Im = 192 \pm 20$ MeV; $M = 1710 \pm 10$ MeV, $2 Im = 160 \pm 50$ MeV $M = 1850 \pm 10$ MeV, $2 Im = 150 \pm 20$ MeV The target asymmetry $\gamma p \rightarrow \eta p$ data reduce coupling of the $P_{13}(1720)$ state to the ηN channel by factor \sim 1.7.

σ_{tot} [μ**b**] (helicity 1/2 - 3/2)

The solution, which explains angular dependence of C_x and C_z observables due to $P_{13}(1900)$:

is supported by the new GRALL data on $O_x O_z$ and T-observables: an important step to a complete experiment.

Left panel : contributions from $\Delta(1232)\eta$ (dashed), $S_{11}(1535)\pi$ (dashed-dotted) and $Na_0(980)$ final states.

Right panel: D_{33} partial wave (dashed), P_{33} partial wave (dashed-dotted), $D_{33} \rightarrow \Delta(1232)\eta$ (dotted) and $D_{33} \rightarrow N a_0(980)$ (wide dotted).

 $D_{33}\text{-wave:}\ \pi N$, $\Delta(1232)\pi$ (S- and D-waves)), $\Delta(1232)\eta$, $S_{11}(1535)\pi$

Properties of the $\Delta(1920)P_{33}$ and $\Delta(1940)D_{33}$ resonances.

	M_{pole}	Γ_{pole}	M_{BW}	Γ^{BW}_{tot}
$\Delta(1920)P_{33}$	1980^{+25}_{-45}	350^{+35}_{-55}	1990 ± 3	$5 375 \pm 50$
$\Delta(1940)D_{33}$	1985 ± 30	390 ± 50	$0 1990 \pm 4$	410 ± 70
	$\mathrm{Br}_{N\pi}$	$\mathrm{Br}_{\Delta\eta}$	$\operatorname{Br}_{N(1535)\pi}$	$\operatorname{Br}_{Na_0(980)}$
$\Delta(1920)P_{33}$	15 ± 8	18 ± 8	7 ± 4	4 ± 2
$\Delta(1940)D_{33}$	9 ± 4	5 ± 2	2 ± 1	2 ± 1

Mass scan of P_{33} and D_{33} pole position

Parity doublets of N and Δ resonances at high mass region

Glozman suggested a restoration of chiral symmetry in high-mass excitations. Parity doublets must not interact by pion emission and could have a small coupling to πN .

$J = \frac{9}{2}$	${f N}_{9/2^+}(2220)$ ****	${f N}_{9/2^-}(2250)$ ****	$\Delta_{9/2^+}(2300)$ **	$\Delta_{9/2^-}(2400)^a$ *
J = $\frac{7}{2}$	${\sf N}_{7/2^+}(1990)^a$ **	${f N}_{7/2^-}(2190)$ ****	$\Delta_{7/2^+}(1950)$ ****	$\Delta_{7/2^-}(2200)^a$ *
J = $\frac{5}{2}$	${\sf N}_{5/2^+}(2000)^a$ **	${\sf N}_{5/2^-}(2200)^a$ **	$\Delta_{5/2^+}(1905)$ ****	$\Delta_{5/2^-}(1930)^a$ **
$J = \frac{3}{2}$	${\sf N}_{3/2^+}(1900)^a$ **	${\sf N}_{3/2^-}(2080)^a$ **	$\Delta_{3/2^+}(1920)^a$ ***	$\Delta_{3/2^-}(1940)^a$ *
$J = \frac{1}{2}$	${\sf N}_{1/2^+}(2100)^a$ *	${\sf N}_{1/2^-}(2090)^a$ *	$\Delta_{1/2^+}(1910)$ ****	$\Delta_{1/2^-}(1900)^a$ **

$J = \frac{3}{2}$	$N_{3/2^+}(1900)$	$N_{3/2^-}(1875)$	$\Delta_{3/2^+}(1980)$	$\Delta_{3/2^{-}}(1985)$
J = $\frac{5}{2}$	$N_{5/2^+}(1960)$	$N_{5/2^{-}}(2070)$	$\Delta_{5/2^+}(1945)$	$\Delta_{5/2^{-}}(1930)$
$J = \frac{7}{2}$	$N_{7/2^+}(1990)$	$N_{7/2}$ -(????)	$\Delta_{7/2^+}(1910)$	$\Delta_{7/2^{-}}(????)$

Holographic QCD (AdS/QCD)

 κ_{gd} is the fraction of most attractive color-antitriplet isosinglet diquark. κ_{gd} =0 for Δ and N(S=3/2) states, $\frac{1}{2}$ for S = 1/2 ($70SU_6$) and $\frac{1}{4}$ for S = 1/2 ($56SU_6$). Hilmar Forkel and Eberhard Klempt, hep-ph:0810.2959v1

L, S, N	κ_{gd}			Resonance			Pred.
$0, rac{1}{2}$, 0	$\frac{1}{2}$	N(940)				input:	0.94
0, $rac{3}{2}$,0	0	$\Delta(1232)$					1.27
0, $rac{1}{2}$,1	$\frac{1}{2}$	N(1440)					1.40
1, $rac{1}{2}$,0	$\frac{1}{4}$	N(1535)	N(1520)				1.53
1, $rac{3}{2}$,0	0	N(1650)	N(1700)	N(1675)			1.64
1, $rac{1}{2}$,0	0	$\Delta(1620)$	$\Delta(1700)$		L,S,N =0, $rac{3}{2}$,1:	$\Delta(1600)$	1.64
2, $rac{1}{2}$,0	$\frac{1}{2}$	N(1720)	N(1680)		L,S,N =0, $rac{1}{2}$,2:	N(1710)	1.72
1, $rac{1}{2}$,1	$\frac{1}{4}$	N(????)	N(1875)				1.82
1, $rac{3}{2}$,1	0	$\Delta(1900)$	$\Delta(1940)$	$\Delta(1930)$			1.92
2, $rac{3}{2}$,O	0	$\Delta(1910)$	$\Delta(1920)$	$\Delta(1905)$	$\Delta(1950)$		1.92
2, $rac{3}{2}$,0	0	N(1880)	N(1900)	N(1990)	N(2000)		1.92
0, $rac{1}{2}$,3	$\frac{1}{2}$	N(2100)					2.03
3, $rac{1}{2}$,0	$\frac{1}{4}$	N(2070)	N(2190)	L,S,N =1, $rac{1}{2}$,2:	N(2080)	N(2090)	2.12
3, $rac{3}{2}$,0	0	N(2200)	N(2250)	L,S,N =1, $rac{1}{2}$,2:	$\Delta(2223)$	$\Delta(2200)$	2.20
4, $rac{1}{2}$,0	$\frac{1}{2}$	N(2220)					2.27
4, $rac{3}{2}$,0	0	$\Delta(2390)$	$\Delta(2300)$	$\Delta(2420)$	L,N=3,1:	$\Delta(2400)$	2.43
5, $rac{1}{2}$,0	$\frac{1}{4}$	N(2600)				$\Delta(2350)$	2.57

Search for baryon states in $\gamma p ightarrow p \pi^0 \pi^0$ (3.2 GeV)

A preliminary analysis reveals only one (relatively) new state:

 $S_{31}(1900)$ with $M\sim 2010$ MeV and $\Gamma\sim 430 MeV$

Polarization information is urgently needed.

η -photoproduction at the neutron - CB-ELSA/TAPS data -

Three different class of solutions are found:

- 1. solutions with strong interference in S_{11} wave;
- 2. solutions with $N(1710)P_{11}$ resonance;
- 3. solutions with narrow state in the mass region 1665 MeV.

Observable $N_{\rm data}$	$rac{\chi^2}{N_{ m data}}$	$\frac{\chi^2}{N_{\rm data}}$	$rac{\chi^2}{N_{ m data}}$	Ref.
	Sol. 1	Sol. 2	Sol. 3	
$\sigma(\gamma { m n} ightarrow { m n} \eta)$ 280	1.32	1.37	1.31	CB-ELSA
$\Sigma(\gamma \mathrm{n} ightarrow \mathrm{n} \eta)$ 88	1.75	2.07	1.79	GRAAL
$\sigma(\gamma { m n} ightarrow { m n} \pi^0)$ 147	2.01	2.48	2.03	SAID database
$\Sigma(\gamma n ightarrow n \pi^0)$ 28	1.02	0.95	0.90	GRAAL

The total and differential cross section for the reaction $\gamma n \rightarrow \eta n$ obtained on the deuteron target. The PWA result from the solution with S_{11} interference (solution 1) is shown. The green curves show the corresponding cross sections on the free neutron target (no Fermi motion). Contributions: S_{11} (dashed), P_{13} (dotted) and P_{11} (dash-dotted)

The total and differential cross section for the reaction $\gamma n \rightarrow \eta n$ obtained on the deuteron target. The PWA result from the solution with narrow P_{11} resonance (solution 3) is shown. The green curves show the corresponding cross sections on the free neutron target (no Fermi motion). Contributions: S_{11} (dashed), P_{13} (dotted) and P_{11} (dash-dotted)

Beam asymmetry for the $\gamma p \to \eta p$ with fine bins

Solution 1: $\chi^2 = 1.35$ **Solution 3:** $\chi^2 = 0.95$

The long-standing discrepancies between the photo-production amplitude $A_{1/2}^n$ for $N(1535)S_{11}$ production ($A_{1/2}^n = -0.020 \pm 0.035 \,\text{GeV}^{-1/2}$ from $\gamma n \to n\pi^0$ (Arndt); $A_{1/2}^n = -0.100 \pm 0.030 \,\text{GeV}^{-1/2}$ from $\gamma n \to n\eta$ (Krusche) is solved.

	$S_{11}(1535)$	$S_{11}(1650)$
Pole position (mass)	1.505 ± 0.020	1.640 ± 0.015
(width)	0.145 ± 0.025	0.165 ± 0.015
PDG	1.510 ± 0.020	1.655 ± 0.015
	0.170 ± 0.080	0.165 ± 0.015
$A^p_{1/2} $ (GeV $^{-1/2})$	0.090 ± 0.025	0.100 ± 0.035
PDG	0.090 ± 0.030	0.053 ± 0.016
phase	$(20 \pm 15)^{\circ}$	$(25\pm20)^{\circ}$
$A_{1/2}^n$ (GeV $^{-1/2})$	-0.080 ± 0.020	-0.055 ± 0.020
, PDG	-0.046 ± 0.027	-0.015 ± 0.021
phase	$(20\pm20)^{\circ}$	$(30\pm25)^{\circ}$

Summary

- 1. An approach for the combined analysis of the pion and photo induced reaction with two and multi particle final states is developed.
- 2. The combined analysis of more them 65 different reactions helped to identify the properties of known baryons.
- 3. The new data support the two new baryon states observed in hyperon photoproduction $P_{11}(1880)$ and $P_{13}(1900)$.
- 4. The η -photoproduction data reveal the baryon resonance $D_{15}(2070)$.
- 5. The $D_{33}(1940)$ state is needed for the description of the $\gamma p \rightarrow \pi^0 \eta p$ data.
- 6. The structure at 1670 MeV observed in the η photoproduction data off neutron can be explained either by the interference within S_{11} wave or by a contribution of a narrow P_{11} state with mass 1670 ± 6 MeV.
- The spectrum of observed states is in direct contradiction with a classical quark model. The best explanations are chiral symmetry restoration or AdS/QCD soft-wall model.