Lorentz and CPT Violation in Astrophysics and Cosmology May 9th-10th, 2011 @ Beijing China

Lorentz-violating Vacuum Birefringence & Its Astrophysical Consequences

Lijing Shao (邵立晶) from Peking University Supervisor: Prof. B.-Q. Ma May 10th, 2011

Institute of High Energy Physics Chinese Academy of Sciences

Outline

Quantum gravity & Lorentz violation
 Modified Maxwell eqs & light propagation
 Phenomena & Observations

 Peak doubling (@ Fermi era)
 De-polarization (e.g., Cygnus X-1 BH)

 Summary

How about Lorentz symmetry breaking?

- Symmetries are the most important ingredients in modern physics
- However, it is not symmetry, but symmetry breaking, that makes our world vivid
- Nature Mother doesn't respect symmetries
 - Parity, CP, Vacuum, etc

Peccei's talk

Eh, so how about Lorentz symmetry?

broken beauty

3 of 21

Quantum spacetime induced LV?

Standard model (particles) + General relativity (gravity)? — things are not easy...

Quantum gravity & Lorentz violation Lehnert's & Ma & Anselmi's talks

 String theory, loop quantum gravity, foamy spacetime, standard model extension, doubly special relativity, Horava-Lifshitz gravity, etc

Astrophysics: Dai & Wu & Ma & Qu & Bi & Anselmi & Yuan & Li's talks
 Cosmology: Cai & Vikman & Zhang & Li & Brandenberger & Evslin's talks

For reviews, see e.g., Mattingly, 2005; Liberati & Maccione, 2009; Shao & Ma, 2010

Lattice QCD spacetime?

Lijing Shao (邵立晶) LSHAO@PKU.EDU.CN 2011-5-12

Vacuum birefringence

an analogy with birefringence within some anisotropic medium, where left-handed and right-handed polarization modes of light travel with different phase velocity and group velocity.

can arise from many parity-violating theories

Chern-Simons terms Carroll et al. 1990; Alighieri et al. 2011 Wu's talk

Ioop quantum gravity Gambini & Pullin 1999; Gleiser & Kozameh 2001

◆ effective field theories Colladay & Kostelecky 1998; Myers & Pospelov 2003

energy-independent, energy-dependent, directionindependent, direction-dependent

can also serve to distinguish parity-violating theories from those of even parity

foamy spacetime Amelino-Camelia et al. 1998

doubly special relativity Amelino-Camelia 2002

Example: Photons in loop quantum gravity

> modified Maxwell eqs Gambini & Pullin, 1999

$$\partial_t \vec{E} = \nabla \times \vec{B} + 2\chi l_{\rm Pl} \nabla^2 \vec{B},$$

$$\partial_t \vec{B} = -\nabla \times \vec{E} - 2\chi l_{\rm Pl} \nabla^2 \vec{E}$$

 $1.6 \times 10^{-35} \text{ m}$

6 of 21

> dispersion relation $\Omega_{\pm} = |\vec{k}| \mp 2\chi l_{\rm Pl} |\vec{k}|^2$

energy(helicity)-dependent velocity Shao & Ma, 2011

$$v_{\pm}^{\mathrm{p}} \equiv \frac{\Omega_{\pm}}{|\vec{k}|} = 1 \mp 2\chi l_{\mathrm{Pl}} |\vec{k}|, \qquad v_{\pm}^{\mathrm{g}} \equiv \frac{\partial \Omega_{\pm}}{\partial |\vec{k}|} = 1 \mp 4\chi l_{\mathrm{Pl}} |\vec{k}|$$

> 5-d EFT $\mathcal{L} = \mathcal{L}_0 + \delta \mathcal{L} = -F^{\mu\nu}F_{\mu\nu}/4 + \xi l_{\rm Pl}n^{\mu}n_{\rho}F_{\mu\nu}(n\cdot\partial)\tilde{F}^{\rho\nu}$

Myers & Pospelov, 2003

Tortoise and the Hare (龟兔寨跑)

Left-handed polarization

Right-handed polarization

Lijing Shao (邵立晶) LSHAO@PKU.EDU.CN 2011-5-12

Light propagation

> wave-package Gleiser & Kozameh, 2001; Shao & Ma, 2011

$$\vec{E}_{\pm} = \operatorname{Re}\left\{\mathcal{A}\exp\left[i(\Omega_0 t - k_{\pm}z)\right]\exp\left[-\frac{(z - v_{\pm}^{\mathrm{g}}t)^2}{\Delta^2}\right]\hat{\mathbf{e}}_{\pm}\right\}$$

> linear polarized light from astrophysics $\hat{e}_{\pm} \equiv \hat{e}_1 \pm i\hat{e}_2$

• e.g., synchrotron radiation in a region penetrated with well ordered magnetic field n+1

- neutron stars (NSs)
- active galactic nuclei (AGNs)
- gamma-ray bursts (GRBs)

 $\varpi_L = \frac{p+1}{p+7/3}$

peak doubling Gambini & Pullin, 1999; Shao & Ma, 2011
 de-polarization Gleiser & Kozameh, 2001; Shao & Ma, 2011

Peak doubling

start at the same time @ source

difference in the group velocity

arrive in sequence @ earth

Peak doubling

Lijing Shao (邵立晶) LSHAO@PKU.EDU.CN 11 of 21 2011-5-12

Peak doubling: BATSE vs Fermi

BATSE onboard CGRO

Dai & Wu's talks

of 21

re-proposal at Fermi era
 a fictitious BATSE GRB: 10^-5 s if LV parameter is of order O(1) Gambini & Pullin, 1999
 a fictitious Fermi GRB: Shao & Ma 2011

$$8\chi l_{\rm Pl}\Omega_0 z \sim 10^2 \chi \left(\frac{l_{\rm Pl}}{10^{-28} \ {\rm eV}^{-1}}\right) \left(\frac{\Omega_0}{300 \ {\rm GeV}}\right) \left(\frac{z}{10^{10} \ {\rm l.y.}}\right) {\rm s}$$

De-polarization

coherent @ source

different in the phase velocity

de-coherent when arriving @ earth

Lijing Shao (邵立晶) LSHAO@PKU.EDU.CN 2011-5-12

De-polarization

Stocks parameter

Shao & Ma, 2011

degrees of polarization

Shao & Ma, 2011

$$\pi \equiv \frac{\sqrt{Q^2 + U^2 + V^2}}{I} = 1, \quad \chi \equiv \frac{\sqrt{Q^2 + U^2}}{I} = \frac{2\mathcal{A}_+\mathcal{A}_-}{\mathcal{A}_+^2 + \mathcal{A}^2} = \cosh^{-1}\left[\frac{16\chi l_{\rm Pl}\Omega_0 z\delta t}{\Lambda^2}\right]$$
$$\varpi \equiv \frac{\sqrt{Q^2 + l}}{I} \quad \chi l_{\rm Pl}\Omega_0 z > \Delta, \quad \sum_{2}^{1} \Omega_0^2 z^2 \right] \quad \varpi_L \equiv \frac{\sqrt{Q^2 + l^2}}{I} = \exp\left[-\frac{32\chi^2 l_{\rm Pl}^2 \Omega_0^2 z^2}{\Delta^2}\right]$$
Lijing S *t*ao (邵立晶) LSHAO@PKU.EDU.CN 14 of 21

AGNs, GRBs, Crab Pulsar, etc

Active Galactic Nucleus

Crab Pulsar

Lijing Shao (邵立晶) LSHAO@PKU.EDU.CN 2011-5-12

Observational constraints

Source	Observation Site	Distance	Energy	$arpi_L$	$ \chi _{ m upper}{}^a$
3C 256	Mayall	$\mathcal{Z} \simeq 1.82$	3000 - 4000 Å	$16.4\pm2.2\%$	5×10^{-5}
GRB 020813	LRIS	$\mathcal{Z}\simeq 1.3$	$3500-8800~{\rm \AA}$	1.8 - 2.4%	1×10^{-7}
GRB 021004	ESO-VLT	$\mathcal{Z}\simeq 2.3$	$3500-8600~{\rm \AA}$	$\lesssim 2\%$	5×10^{-8}
GRB 021206	RHESSI	$\mathcal{Z} \sim 0.1$	$0.15-2.0~{\rm MeV}$	$80\pm20\%$	1×10^{-15}
Crab pulsar	SPI	$\sim 2~{\rm kpc}$	$0.1 - 1 { m MeV}$	$46\pm10\%$	2×10^{-10}
GRB 041219A	SPI	$\mathcal{Z} \sim 0.3$	$100-350~{\rm keV}$	$63^{+31}_{-30}\%, 96^{+39}_{-40}$	$6~1 imes 10^{-14}$
CUNIVER N	 ✓ 3C 256 ✓ GRB0 20813 & GRB 021004 ✓ GRB 021206 [refuted] ✓ Crab Pulsar ✓ GRB041219A [estimated distance] ✓ Stecker 2011 				
	Lijing S	hao (邵立晶) LSHAO@PKL	J.EDU.CN	16 of 21

2011-5-12

Previous constraints on de-polarization

$$|2\chi l_{\rm Pl}(\Omega_{0h}^2 - \Omega_{0l}^2)z| \lesssim \pi$$

> spectra
$$N(\Omega_0) \propto \Omega_0^{-\Gamma} e^{-\Omega_0/E_0}$$

$$\langle \varpi_L \rangle \equiv \frac{\int_{E_1}^{E_2} N(\Omega_0) \varpi_L(\Omega_0) d\Omega_0}{\int_{E_1}^{E_2} N(\Omega_0) d\Omega_0}$$

Cygnus X-1 black hole

Polarized Gamma-Ray Emission from the Galactic Black Hole Cygnus X-1

P. Laurent, *et al. Science* **332**, 438 (2011); DOI: 10.1126/science.1200848

distance ~ 2.1 kpc; 400 eV -- 2MeV; Gamma-ray polarization : 67 +/- 30%

Lijing Shao (邵立晶) LSHAO@PKU.EDU.CN 2011-5-12

Cygnus X-1 black hole

Lijing Shao (邵立晶) LSHAO@PKU.EDU.CN 2011-5-12

Summary

standard model + gravity = quantum gravity? \succ Lorentz violation: an valuably observational window (@ cutting-edge) > many astrophysical consequences (example) vacuum birefringence peak doubling de-polarization \succ LV Future (observational-oriented) confirm: big news in physical society on-confirm: challenge for some quantum gravitational theories

Lijing Shao (邵立晶) LSHAO@PKU.EDU.CN 2011-5-12

Spacetime in Fuzziness is also of Beauty

