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Discrete Space-Time Symmetries

• Lorentz Transformations

• Parity

• Charge Conjugation

• Time Reversal

• The CPT Theorem

• Spontaneous Breaking of CP and Cosmology



Lorentz Transformations

• Lorentz transformations
x x’ =

 x

preserve the invariance of the space-time interval
x x = x2 –c2t2 = x’2 –c2t’2 = x’ x’

• This constrains the matrices 
 to obey

 = 
 




where 00 = -1 ;ij =  ij; 0i = i0 = 0
• Pseudo orthogonality of  matrices [ = T ] 

allows classification of transformations depending on 
whether: 

det  =  1 ; 0
0 =  [1+i (i

i)
2]1/2



• As a result the Lorentz group splits into 4 pieces:

L+: det  = 1    0
0  1

L-: det  = -1   0
0 1

L+: det  =1     0
0  -1

L- : det  = -1   0
0  -1

• The transformation matrices  in L+ form a 
subgroup-the proper orthochronous Lorentz group. 
All other transformations in the Lorentz group can 
be obtained from   L+ by using two discrete 
transformation Parity P -  and Time Reversal 
T + 

• Clearly if   L+ then P  L- ; PT  L+ ;           
and T  L 

-



• Remarkably, nature is invariant under the proper 
orthochronous Lorentz group L+ but not the full 
Lorentz group

- Parity is violated in the weak interactions

- Time reversal is violated in K and B decays

• Can understand this on the basis of the Standard 
Model of the electroweak and strong interactions and 
of the CPT Theorem [Pauli, Schwinger, Luders, Zumino]

• To understand this, I need to sketch how quantum 
fields behave under the discrete space-time 
transformations P and T, as well as under charge 
conjugation C, which physically corresponds to 
changing the sign of all charges in the theory



Parity



• Spin zero scalar (S) and pseudoscalar (P) fields under 
Parity transform as follows:

U(P) S(x,t) U(P)-1 = S(-x,t)
U(P) P(x,t) U(P)-1 = -P(-x,t)

• For spin ½  Dirac fields  one can deduce the Parity
transformation of the fields from the requirement 
that the Dirac equation 

[-i  +m]  = 0
be left invariant under the replacement of x  -x and
(x,t) (-x,t) . This is achieved if under Parity

U(P) (x,t) U(P)-1 = P 
0(-x,t) with  |P|2=1

• Using that {, } =-2  and that 0†= 0 while   i†= -i

and defining a matrix 5 = i0 12 3 , which obeys     
{5, } =0, 5

†= 5 and 5
2 = 1, one can easily deduce 

the Parity properties of fermion bilinears



• Consider, for example, the bilinear

(x,t) (x,t) = (x,t) † 0 (x,t) 

Then

U(P)(x,t)(x,t) U(P)-1 =  U(P) (x,t) † U(P) -1 0

 U(P)(x,t) U(P)-1

= (-x,t) † P* 0 †0

 P 
0(-x,t)

Since   0 †00 = 0 and  |P|2=1 it follows that

U(P)(x,t)(x,t) U(P)-1 = (-x,t)(-x,t)



• One finds in similar fashion that the transformation 
properties for scalar, pseudoscalar, vector and axial 
vector fermion bilinears are:

U(P)(x,t)(x,t) U(P)-1 = (-x,t)(-x,t)

U(P)(x,t)5(x,t) U(P)-1 = -(-x,t)5(-x,t) 

U(P)(x,t)(x,t) U(P)-1 =[](-x,t)(-x,t) 

U(P)(x,t) 5 (x,t) U(P)-1 = -[](-x,t) 5 (-x,t)

• From the above, one sees immediately that the 
electromagnetic interactions are invariant under 
Parity:                                              

Parity

Wem= d4x e A(x)(x)(x)    Wem





Charge Conjugation



• It is straightforward to compute how fermion bilinears
behave under charge conjugation. For example:

U(C)(x)(x) U(C)-1 = U(C) †
 (x) 0

  (x) U(C)-1

{Majorana repr.  C=1}   =  (x) 0
 

† 
 (x)

{Fermions anti com.}    = -  † 
 (x) 0

  (x)
= -  † 

 (x) 0T
  (x)

{Majorana 0T = - 0}    = (x)(x)

• Similar calculations lead to the results: 

U(C)(x) 5 (x) U(C)-1 = (x) 5 (x)
U(C)(x)  (x) U(C)-1 =  - (x)  (x)
U(C)(x)   5 (x) U(C)-1 = (x)   5 (x)



• An immediate consequence of these results is that 
electromagnetic interactions are invariant under charge 
conjugation                                      

Charge Conj.

Wem= d4x e A(x)(x)(x)    Wem

• Besides QED also QCD is C-invariant, since it involves only 
vector interactions. However, the SU(3) currents
Ja(x) = q(x)aq(x) do not transform as simply under C as 
Jem (x) =  (x) (x) does

• One has:
U(C) q(x)aq(x) U(C)-1 = -q(x) T

aq(x)
• Now T

a = -a for a=2,5,7, while T
a = a for a=1,3,4,6,8. Thus 

for QCD to be C-invariant we require that under C:
Aa

(x)  Aa
(x) a=2,5,7  ; Aa

(x)  -Aa
(x) a=1,3,4,6,8

or
Aa

(x)  -[a] Aa
(x) 

with [a]=1 for  a=1,3,4,6,8 and [a]= -1 for  a=2,5,7



• One can check that these transformation properties for 
Aa

(x) are precisely what is needed to have the field 
strengths Ga

(x) have well defined transformation 
properties under C

• Since the only non-vanishing structure constants fabc are  
for abc=123; 147; 156; 246; 257; 345; 367; 458; 678, it 
is easy to see that
Ga

(x) =  Aa
 (x)- Aa

(x)+ g3 fabcAb
(x) A 

c(x)
indeed transforms under C just as Aa

(x) does:
Ga

(x)  Ga
(x) a=2,5,7 ; Ga

(x)  -Ga
(x) a=1,3,4,6,8

Or
Ga

(x)  -[a] Ga
(x)

• This insures that under charge conjugation
WQCD = d4x { q(x)[iD-mq] q(x) -1/4 Ga

(x) Ga(x)}
 WQCD







• However, even so, the simultaneous presence of  both 
vector and axial pieces in Ji(x) renders  Wint not invariant 
under C

• Writing, in an obvious notation, 

Ji(x)= V 
i(x) - A 

i(x)

then one sees that under C

Wint = d4x g2[ V
i(x)- A 

i(x)]W i(x)

 d4x g2[ V
i(x)+ A 

i(x)]W i(x)

Thus C is violated by the weak interactions

• I remark that the presence of the axial currents is also what 
causes Parity to be violated. However, note that under the 
combined operation of C and P

Wint  Wint

at least for the limited sector we have explored [more later]



Time Reversal

• Classically, T-invariance corresponds to having  as 
permitted motions both those going forward in 
time []as well as backwards in time [].

• Of course, under T, dynamical variables change 
appropriately: t  -t; x  x ; p - p; F F

• Quantum mechanically the interchange of initial
and final states is implemented by having U(T) be 
an anti-unitary operator : [Wigner]

U(T) = V(T) K

where V †(T) = V-1(T) and K  complex conjugation

• The need for complex conjugation is seen directly 
from the Schroedinger equation





• Association of complex conjugation with time reversal
interchanges incoming and outgoing states:

<U(T)|U(T)> = <|>

• Thus if T is a good symmetry, one relates processes to 
their time-reversed process,  e.g. AB  CD to CD  AB 

• In terms of S-matrix elements, if T is a good symmetry, 
then

Sfi = out<f | i>in = in<U(T)i|U(T)f>out = out<iT |fT>in 

where the last steps follows if T is a good symmetry. In 

this case then 

|U(T) f>out = |fT>in 

where if f = {pC, pD} then fT = {-pC, -pD} 



• In field theory the action of T on electromagnetic fields can be 
gleaned from the behavior of the Lorentz force:

F = e[E + v x B]  F  E(x,t)  E(x,t); B(x,t)  -B(x,t)
• It follows therefore that:

U(T) A(x,t) U(T)-1 = [] A(x,-t) ; ([0]=1; [i]=-1)
• For Dirac fields one can deduce the field transformation properties 

under time reversal by again asking that the action of U(T) on the 
Dirac equation produces another solution for this equation

• Writing
U(T) (x,t) U(T)-1 = TT (x,t) with |T|2= 1 

and remembering that U(T) complex conjugates all c-numbers, one 
finds that the matrix T must obey:

T 0* T-1 = 0 ; T i* T-1 = -i

Again the form of the matrix T depends on the representation of
the  -matrices used. In the convenient Majorana representation:

T = 0 5



• It is straightforward to compute how the various fermion 
bilinears transform under T. One finds:

U(T)(x,t)(x,t) U(T)-1 = (x,-t)(x,-t)
U(T)(x,t)5(x,t) U(T)-1 = (x,-t)5(x,-t) 
U(T)(x,t)(x,t) U(T)-1 = [](x,-t)(x,-t) 
U(T)(x,t) 5 (x,t) U(T)-1 =[](x,-t) 5 (x,-t)

• Note that, in contrast to C, T-transformations affect vector 
and axial currents the same way

• It follows immediately from the above, and the fact that the 
electric charge e is real, that the electromagnetic interactions 
are conserved under T

time reversal
Wem= d4x e A(x)(x)(x)  Wem

• It is also easy to check that the gauge interactions in both 
QCD and in the electroweak theory also conserve T, provided 
one properly defines how the gauge fields transform.



• Since for:
- SU(3):  *a = -a for a=2,5,7; *a= a for a=1,3,4,6,8
- SU(2):  *1=  1 ; *2 = -2  ; *3= 3

it is easy to check that the desired transformation
properties of the gauge fields under T are:

U(T) A
a(x,t) U(T)-1 = [] [a] A

a (x,-t)      QCD
U(T) W

i(x,t) U(T)-1 = [] [i] W
i(x,-t) SU(2)

U(T) Y(x,t) U(T)-1 = [] Y(x,-t)                   U(1)
• Since the gauge couplings g1, g2, g3 are real, it follows 

that under Time Reversal T
WGauge int[QCD, SU(2)xU(1)] WGauge int[QCD, SU(2)xU(1)]
• However, T-violation can arise in the electroweak 

theory in the interactions involving the Higgs field, 
since these couplings can be complex











The CPT Theorem















Spontaneous Breaking of CP and 
Cosmology

• If there are no scalar fields in the theory,  the 
Lagrangian of a theory of just fermions and gauge 
fields in general conserves CP and T (ignoring -
terms)

• However, CP and T can be broken spontaneously
through the formation of complex fermion 
condensates

<(x)(x) > = 3 e i

• Spontaneous CP-violation however has 
cosmological consequences, because CP domains, 
separated by walls, form in the Universe [Kobzarev
Okun Zeldovich]



• In Universe find domains of different CP + CP 
- CP

• These domains are separate by walls with a surface 
energy density    3 

• The energy density in these walls dissipates very 
slowly as the Universe cools, with

Wall =  T
• As the temperature of the Universe gets below T  

the energy density in the walls begins to dominate 
and eventually overcloses the Universe

• To avoid this problem one has to assume that the 
scale of spontaneous CP-violation  is above the 
temperature scale of inflation  > Tinflation, so that we 
effective live in one inflated domain


