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Lorentz Transformations

* Lorentz transformations
XH— x"H=AHF xV
preserve the invariance of the space-time interval
XM x, = X2—Ctr= X2t = XM X
* This constrains the matrices A" to obey

npvz AXM Mok AKV
where 1, = -1 y1ij = 0 i» Noi =Mip=0
* Pseudo orthogonality of A matrices [N=An A]
allows classification of transformations depending on

whether:
det A=+1;A%=1[1+Z (A1)2]Y2



As a result the Lorentz group splits into 4 pieces:
T,: detA=1 A% >1
LT: detA=-1 A% >1
LY,: detA=1 A%<-1
LV : detA=-1 A%< -1
The transformation matrices A in L', form a
subgroup-the proper orthochronous Lorentz group.

All other transformations in the Lorentz group can
be obtained from A LT+ by using two discrete
transformation Parity P¥ =-n  and Time Reversal
TH=+m,,

Clearlyif Ac L' . thenPAc L' ;PTACL",;
and TAc LV




Remarkably, nature is invariant under the proper
orthochronous Lorentz group LT+ but not the full
Lorentz group

Parity is violated in the weak interactions
Time reversal is violated in K and B decays

Can understand this on the basis of the Standard
Model of the electroweak and strong interactions and
of the CPT Theorem [Pauli, Schwinger, Luders, Zumino]

To understand this, | need to sketch how quantum
fields behave under the discrete space-time
transformations P and T, as well as under charge
conjugation C, which physically corresponds to
changing the sign of all charges in the theory




Parity

* The transformation properties of electromagnetic
fields under Parity follows directly from classical
considerations by looking at the Lorentz force

_dp
F= dt
Since under Parity x — -X, alsop,v—>-p, - v. Thus it

follows that E(x,t) > -E(-x,t) and B(x,t) > B(-x,t)
* For the gauge potential A*, more formally, the

Parity transformation is induced by a unitary
operator U(P) which gives:

U(P) A*(x,t) U(P)™* = n[u] A*(-x,t) ; (n[0]=1; n[i]=-1)

= e[E + v x B]




e Spin zero scalar (S) and pseudoscalar (P) fields under
Parity transform as follows:

U(P) S(x,t) U(P)™*=S(-x,t)
U(P) P(x,t) U(P)™" = -P(-x,t)

* For spin % Dirac fields v one can deduce the Parity
transformation of the fields from the requirement
that the Dirac equation

[-i Y40, +m] y =0
be left invariant under the replacement of x - -x and
v(x,t) > y(-x,t) . This is achieved if under Parity

U(P) wix,t) U(P)t=n, vPu(-x,t) with |n,|?=1
* Using that {y*, '} =-2 n*vand that y°'= y* while y''= -y
and defining a matrix y. = iy° yy?y?, which obeys
{ve, v.} =0, v."=v. and y.>=1, one can easily deduce
the P%rity properties of fermion bilinears



* Consider, for example, the bilinear
w06t wixt) = wixt) "0 wxt)
Then
U(P) wixt)y(xt) UP)= U(P) w(x,t) " U(P) 170

® U(P)wy(x,t) U(P)*
= y(xt) T 0Ty
® Mp v w(-xt)

Since %% =9% and |n,|%=1 it follows that

U(P) wixthy(xt) UP) = w(-xthy(-xt)



* One finds in similar fashion that the transformation
properties for scalar, pseudoscalar, vector and axial
vector fermion bilinears are:

U(P) wxt)w(xt) UPP) = w(-xt)y(-xt)

U(P) wxt)ysw(x,t) U(P) ™= - w(-xt)ysy(-x.t)

U(P) wixt)y"w(x,t) U(P) =n[u] w(-xt)y"y(-xt)

U(P) w(xt)y" s w(x,t) U(P) 1= -mu] wi-xt)y* ysw(xt)
* From the above, one sees immediately that the

electromagnetic interactions are invariant under
Parity:

Parity

W= Jd* e ARx) wix)y,p(x) = W,



It is interesting to consider how transforms
fields of a given chirality:

=2 (1 7s) W5 wp=3 (14 7s) W
Since {y,,,Ys}=0, is easy to see that
U(P) w (%,t) U(P)™ =mp 7Oy g(-x,t)
U(P) wr(x,t) U(P) ™" =1p vw (-X,t)
Thus, chiral symmetric interactions are Parity
conserving and chiral asymmetric interactions violate
Parity:

In QCD, based on an SU(3) gauge theory, the quark
fields 3, and 3; interact in the same way. Hence, Parity
is conserved in the strong interactions

In the SU(2) x U(1) electroweak theory, under SU(2)
v, ~ 2 while v, ~ 1. Hence, the weak interactions
violate Parity




Charge Conjugation

* Physically Charge Conjugation Cis associated with changing
the sign of all charges. Hence for the electromagnetic
potential one has:

U(C) A¥(x) U(C)*=- A¥(x)

* For Dirac particles, since under C one wants to transform

particles into antiparticles, it corresponds, essentially, to
Hermitian conjugation

U(C) wix) U(C) T =m Cy' (x) with [nc[*=1
The matrix C can be deduced from requiring that the
Dirac equation be invariant under C, which gives
CywCl=-yH
Actually, C depends on the form of the y-matrices used:
Majorana repr: yW =-y* = C=1

Dirac repr: Y’ = ((1) _01) Yy = (_C:ji c(s;) = C=vy?



* Itis straightforward to compute how fermion bilinears
behave under charge conjugation. For example:

U(C) wix)w(x) U(C) = U(C) y', (x) 1 o5 W (x) U(C)!
{Majorana repr. C=1} =y (x)v° 5 ¥ "5 (x)
{Fermions anti com.} = -y "5 (x) Y° 45 Wy (X)

= -y (%) YT, Wy, (X)
{Majorana y°T=-y% = w(X)Bw(X) :

e Similar calculations lead to the results:

U(C) wix) ys wix) U(C) = w(x) vs w(x)
U(C) w(x)y* w(x) U(C)t= - w(x)y* w(x)
U(C) w(x) " yswix) UC)T = w(x)y"vs w(x)



An immediate consequence of these results is that
electromagnetic interactions are invariant under charge

conjugation
Charge Con,j.

W= ld* e ARX) wiX)y,p(x) = W,

Besides QED also QCD is C-invariant, since it involves only
vector interactions. However, the SU(3) currents
JH(x) = q(x)y*A,q(x) do not transform as simply under C as

Mo (X) =y (x)y*My (x) does
One has: B

U(C) a(x)y*A,a(x) U(C) = - q(x) y“AT,q(x)
Now A, =-A_fora=2,5,7, while A", =A_for a=1,3,4,6,8. Thus
for QCD to be C-invariant we require that under C:
A M(x) = AMx) a=2,5,7 ; A M (x) = -A*(x) a=1,3,4,6,8
or

A M(x) = -nla] AM(x)

with n[a]=1 for a=1,3,4,6,8 and n[a]=-1for a=2,5,7



* One can check that these transformation properties for
A_"(x) are precisely what is needed to have the field
strengths G_"V(x) have well defined transformation
properties under C

* Since the only non-vanishing structure constants f,, _are

for abc=123; 147; 156; 246; 257; 345; 367; 458; 678, it
IS easy to see that
G " (x) = 0MA,Y (x)- OYA M (x)+ g5 T, AMX) AY ()
indeed transforms under C just as A_*(x) does:
G M (x) > G ,*(x) a=2,5,7 ; G_*V(x) = -G *(x) a=1,3,4,6,8
Or
G_*(x) = -nla] G*V(x)
* This insures that under charge conjugation
Woeo = Jd* { a(x)[iyD,-m ] a(x) -1/4 G,*(X) G, ,,(X)}
— Wacp



* The situation is different for the weak interactions since they
involve both vector and axial currents in the action

* Forinstance, for the SU(2) interactions one has
Wint = [d4x ¢, J4(x) W, (x)
where , say, for the 15t generation of leptons:

0= 50 s (9

=1/2( velx) e(x)) yH(1-s) T ("ee((:;)

* These currents transform differently under C in their vector

and axial vector parts, as well as in their 1, 2, or 3
components.

* Although one can compensate for the SU(2) dependence of
JK&(x) with appropriate C-transformation properties for the
W, (x) fields, the presence of both vector and axial currents
in Ji.(x) violates charge conjugation invariance



* A straightforward calculation gives:

U(C)IH 5(x)U(C)*=-1/2( ;e(x) E(X))Y“(l"'%) 11,3 (VQ(X))
| ~Le(x)
U(EPMIVICI = 172( Vilx) elwpi(175) 7 Vo)
e(x)

* The difference in the behavior in the 1,3 and 2
components can be absorbed by postulating that

U(C) W“i()() U(C)_l = 'Tl[i] WM](X)
where n[1,3]=1;n[2]=-1

* This is as one might expect since it implies that,
under C, the charged W fields transform as:

WE,, (x) = i/N2[WH, (x) -/+ IWH, (X)] = - W, (x)



 However, even so, the simultaneous presence of both
vector and axial pieces in J*(x) renders W™ not invariant

under C
* Writing, in an obvious notation,
Jh(x)= V. (x) - AR (x)
then one sees that under C
Wint = Jd% g, [ VH(x)- AR ()W, ()
— Jd*x g, [ VI, (x)+ AR (X)W, (x)
Thus C is violated by the weak interactions

* | remark that the presence of the axial currents is also what
causes Parity to be violated. However, note that under the

combined operation of C and P
Wint SN Wint
at least for the limited sector we have explored [more later]



Time Reversal

Classically, T-invariance corresponds to having as
permitted motions both those going forward in
time [—]as well as backwards in time [«].

Of course, under T, dynamical variables change
appropriately:t - -t; x > x; p—>-p; F>F

Quantum mechanically the interchange of initial
and final states is implemented by having U(T) be
an anti-unitary operator : | ]

U(T) = V(T) K
where V'(T) = VX(T) and K= complex conjugation

The need for complex conjugation is seen directly
from the equation



Taking the complex conjugate of the equation

e, ~
|E\P(x, t) =H WY(x, t)

and letting t — -t gives the equation

i%‘{’*(x, -t) = H* W*(x, -t)
So, provided the Hamiltonian is real (H* = H), if ¥(x, t) is a
solution of the equation, so is Y*(x, -t)

For T-invariance asking for the reality of H needs slight
modification if spin is involved. More correctly, what is
needed is that

V(T) H* V(T)1=H
For example, for spin orbit coupling H.,=v ¢.L and since,

under T, L — -L one has H*. = - yo*.L . This can be returned
to its original form using V(T) = 5,, since 6, 6*c, = - G.

Thus we learn that under T not only L — -L, but also
effectively ¢ — -o. Time reversal, reverses all spins!



e Association of complex conjugation with time reversal
interchanges incoming and outgoing states:

<U(T)D|U(T)V> =<V | D>
 Thusif Tis a good symmetry, one relates processes to
their time-reversed process, e.g. AB — CD to CD — AB

* |n terms of S-matrix elements, if T is a good symmetry,
then

S, =

I — out

<f | i> = <U(T)i]U(T)f>,
where the last steps follows if T is a good symmetry. In

out<|T | fT>in

this case then
| U(T) f>out = |fT>in
where if f = {p., py} then f-={-p., -py}



In field theory the action of T on electromagnetic fields can be
gleaned from the behavior of the force:

F=¢c[E+vxB] > F= E(x,t) > E(x,t); B(x,t) > -B(x,t)
It follows therefore that:
U(T) A*(x,t) U(T)™* = n[u] A*(x,-t) ; (n[0]=1; n[i]=-1)

For Dirac fields one can deduce the field transformation properties
under time reversal by again asking that the action of U(T) on the
Dirac equation produces another solution for this equation

Writing
U(T) wixt) U(T) " =n;Ty(xt) with [ng|*=1
and remembering that U(T) complex conjugates all c-numbers, one
finds that the matrix T must obey:
T YO* T—l — VO; T yi* T—l — _yi
Again the form of the matrix T depends on the representation of
the y -matrices used. In the convenient representation:

T=79"y,



It is straightforward to compute how the various fermion
bilinears transform under T. One finds:

U(T) wixthyt) UT)H = wix,-t)hy(x,-t)

U(T) wE)yswix,t) U(T) = w(x,-t)ysw(x,-t)

U(T) wOt)yrywxt) U(T) ™ =nlu] wix,-t)y*y(x,-t)
U(T) wxthy" ys wix,t) U(T) =n[u] wix,-t)y* ys wix,-t)

Note that, in contrast to C, T-transformations affect vector
and axial currents the same way

It follows immediately from the above, and the fact that the
electric charge ¢ is , that the electromagnetic interactions
are conserved under T

W= [dx & AR(x) W)y, w5 W,
It is also easy to check that the gauge interactions in both
QCD and in the electroweak theory also conserve T, provided

one properly defines how the gauge fields transform.



* Since for:
- SU(3): A*, =-A, fora=2,5,7; A* = A, fora=1,3,4,6,8
- SU(2): tF = 110, =T, T T
it is easy to check that the desired transformation
properties of the gauge fields under T are:
U(T) A¥,(¢t) U(T)* =nlu] nla] A4, (x,-t) QCD
U(T) WHi(x,t) U(T)* = nlu] nli] WH(x,-t)  SU(2)
U(T) Y*(x,t) U(T) "= n[u] Y¥(x,-t) U(1)

* Since the gauge couplings =, 2., 2. are real, it follows
that under Time Reversal T

Wauge intlQCD, SU(2)xU(1)]—> W, 00 ine QCD, SU(2)xU(1)]

* However, T-violation can arise in the electroweak
theory in the interactions involving the Higgs field,
since these couplings can be complex




* Let us examine the simplest example involving just one
complex Higgs doublet field @:

. ( j;})

* The Higgs self-interactions which cause the breakdown
of SU(2) x U(1)—> U_ (1) are real, since the Higgs
potential must be Hermitian:

V=A[D "D -v2/2]%2;V=V" = A, v?real

* However, the Yukawa interactions detailing the
coupling of the Higgs field with the fermions in the
theory can have complex coefficients

* For example, for the quark sector, one has:

Lyakawa="T"; ( u; du); @ ug-T%; ( u; di); @’ dg;+ h.c.
where @’ =i, ®* and, in general, the couplings [
and I'%; are complex numbers



* After the SU(2) x U(1)—> U_, (1) breakdown, effectively,
the Higgs field gets replaced by:

(j:( ) Sz (YT

where H is the physical Higgs field
* The resulting mass matrices for the quarks
MY, = V/\/ZFUIJ ; M = v/\/zrd
can be diagonalized by a b| unitary transformation
UY MUUY: = MY i ; Ud Mdud; = M@
reducing the Yukawa mteractlons to:
Lyawa —> ZiM, 9 [1+H/ V]
* Thisis clearly T- mvarlant provided that under T
H(x,t) > H(x,-t)

diag



* However, the unitary transformation on quarks to
diagonalize their mass matrices alters the form of the
charged current weak interactions

 Before this transformation one had:
Lec = AWM + WL}

where

d,

J_uz ( U, u, ug)y“ (1- ’}/5) 1 (dz) ; _|+“= J T_“
d

* After the transformation to the physgical quark states
the currents now involve the
unitary matrix V., given by :
V= U™ UG
and one has



d
J_“z ( :1 E DYM (1- YS) VCKM (S) ’ J+l,1= J +-|,1
b
* Because under T the matrix V,,gets complex conjugated

d
UM um*=m(u ¢ Dm(l-vs)v*cm(S)

b
while,

U(T) W,HU(T) ' = n[p] W,H
the charged current interactions written in this new
physical basis violate Time reversal. Under T':
U(T) W,HI, U(T) 1= W, K,
* For the case of 3 generations one can show that V., has

only one phase 0. Thus, T-violation in the Standard Model
can be ascribed to the presence of this phase o



The CPT Theorem

 If nature is described by a local, Lorentz invariant field
theory, where there is the usual connection between
spin and statistics, then one can prove a deep result,
the CPT theorem.

* This theorem states that if the above conditions hold
then under CPT transformations the action of the

theory is invariant [ , , , ]
CPT

W-—W
* Proof of this theorem can be gleaned from our
discussion of the separate P, C, and T transformation
properties of quantum fields



* Let uslook at QED, as a warm-up. Under the combined
C, P and T transformations one has:
CPT

A¥(x,t) — [-1] n[p] nlp] A*(-x,-t)
cerr o
Wty y(xt) — [-1] il nlul Wity y(x,-t)
* Thus, obviously, since B
W, Q0 = [dx & Ak(x) y(x)y,y(x)
is separately invariant under C, P, and T
transformations, then also

QED CPT, QED
Wint Wint

* However, CPT invariance also holds when there is
violation of the separate symmetries



As an example, consider neutral current interactions in
the electroweak theory. These interactions violate
both P and C. However, both T and CPT are conserved

The action for neutral current interactions is:

W,  NC= Jd4x JMyeZ,
where
JHNC:2{JU3- JHem}:VH+AH

is the sum of vector and axial currents

It is easy to see that Parity is violated in W, , N® since:
P P P
Z,=nlul Z,;VE=>np] VE; A= -np]Ak
Also Charge Conjugation is violated since:
C C C

Z,—> -7,V Vi Al AX



* However, T is conserved in W, , N¢since:
T T T
Z=nlpl 2 VE->nlp] VE; AR n[p]AY
* And sois CPT, since
CPT CPT CPT
Z — - Z“,V“—> -VH; Al— -AH
. Note also that, up to anirrelevant sign, T and CP are
equivalent since:
CP CP CP
Z,—~lplZ,;V*— -nly] V“ At— -n[u]A¥
Thus CPis conserved in W, N

* This equivalence holds also when CP and T are each
violated. Hence the combined CPT transformation is
an invariance of the action, as required by the CPT
theorem



* Let us check this last point by looking at the T-violating
CKM interactions. For simplicity, let us just consider the
ub piece, where in the standard parameterization

Vel s = e, Then
e —
W = dx {e"°W.* uv (1-v.)b+h.c.
ub 2‘\/ ) -[ { + J’p ( /5) }
* Because under T:
T

W, K= n[u] W.H
and
- T -
uy, (1-ys) b = nfu] vy, (1-vy5)b

but all c-numbers get complex conjugated:

T —
W, - — Jd* {e oW, Uy, (1-v.) b+ h.c.}
2\ 2 i

So, indeed, as we argued earlier, T is violated




The behavior under CP is individually different, since particles are
transformed into anti-particles. However, the net effect is the
sameas T

One has:
CP
W, = -n[u] WH
- CP -
u ﬁu‘/lu (1_ YS) b — _n[“’] b ﬁ'f’p (1_ YS) U
Thus, under CP:

CP
Wub -

Jdéx {eWH by (1-v.) u+h.c}

e
2\ 2 J'“
= \e/ Jd*x {e® W,* uy, (1-7.) b+ h.c.}
2\ 2 |
which is precisely the result we obtained when we did a T-
transformation on W,

It follows therefore that
CPT
Wub E— Wub




More generally, the CPT theorem holds as the result
of the Hermiticity of the Lagrangian and the role that
T and CP play on the operators in the Lagrangian

Due to the Hermiticity of the Lagrangian, the most
general term has the structure:

L=20(x)+ 2" O%(x)
Now, under T:

T T
O(x! t) - O(x.r _t) y 4=

while under CP:
CP
O(x, t) O*(-x t); o>

Hence
CPT

W = Jd*x L= [d*% {20(x) + 2707(x)} — W
which is the CPT theorem



Spontaneous Breaking of CP and
Cosmology

* |f there are no scalar fields in the theory, the
Lagrangian of a theory of just fermions and gauge
fields in general conserves CP and T (ignoring 0-
terms)

 However, CP and T can be broken spontaneously
through the formation of complex fermion
condensates

< y(x)w(x)>=A3e®

* Spontaneous CP-violation however has
cosmological consequences, because CP domains,
separated by walls, form in the Universe |

]



In Universe find domains of different CP vopC
These domains are separate by walls with a surface
energy density o ~ A3
The energy density in these walls dissipates very
slowly as the Universe cools, with

Pwan =C T
As the temperature of the Universe gets below T ~ A
the energy density in the walls begins to dominate
and eventually overcloses the Universe
To avoid this problem one has to assume that the
scale of spontaneous CP-violation A is above the
temperature scale of inflation A>T so that we
effective live in one inflated domain

inflation”



