Measurement of Muons from Heavy Flavor Decays in pp Collisions at 14 TeV with the ALICE-Muon Spectrometer at the LHC

Xiaoming Zhang for the ALICE Collaboration

Institute of Particle Physics, Huazhong Normal University, Wuhan, China

Key Lab. Quark and Lepton Physics, MOE, China

Laboratoire de Physique Corpusculaire, IN2P3/CNRS, Université Blaise Pascal, Clermont-Ferrand, France

September 24, 2009

- Motivations
- 2 ALICE Detector Overview
- Method
- 4 Results
- **5** Conclusion & Outlooks

Motivations

Testing NLO pQCD with Heavy Flavors

Large theoritical uncertainties come from,

- \bigcirc quark mass (m_Q) ,
- 2 parton density parametrisation (PDF),
- 6 fragmentation parameter,
- 4 perturbative uncertainty from scale variations.

$\sigma_{pp}^{\it HF}$ is the Baseline for $\sigma_{\it AA/pA}^{\it HF}$

- 1 $\sigma_{pp}^{HF}/\sigma_{pA}^{HF}$, (anti-)shadowing (gluon PDF in nucleus)
- $\sigma_{pp}^{HF}/\sigma_{AA}^{HF}$, energy loss (medium dissipative properties)

Resonance Yields

- $\textbf{ 1} \quad \text{normalisation for } \sigma^{J/\Psi} \ \& \ \sigma^{\Upsilon} \text{in } \textit{pA} \text{ and } \textit{AA}$
- 2 understanding $N(B \to J/\Psi)/N(\text{direct } J/\Psi)$ via σ^B

Understanding Energy Loss Effects

$$R_{AA}(\rho_{\rm t},\eta) = \frac{1}{< N_{coll}>} \times \frac{d^2N_{AA}/d\rho_{\rm t}d\eta}{d^2N_{\rho\rho}/d\rho_{\rm t}d\eta}$$

- $2 \frac{R_{AA}^{B}(p_t)}{R_{AA}^{D}(p_t)}, \text{ mass effect at high } p_t \text{ region}$

ALICE Detector Overview

Method

- 1 Extract $N_{\mu^{\pm}/\mu^{-}\mu^{+}\leftarrow B/D}$ from "data".
- 2 Correct for integrated luminosity, detection efficiency and acceptance.
- 3 Correct for decay kine. $(F_{MC} \text{ calculation}).$
- Get differential integrated B & D hadron cross sections.

$$\sigma^{B/D}(\rho_{t} > \rho_{t}^{min}, -4 < \eta < -2.5) = \frac{N_{\mu^{\pm}/\mu^{-}\mu^{+} \leftarrow B/D}(\Phi^{\mu^{\pm}/\mu^{-}\mu^{+}})}{\int Ldt} \times \frac{1}{\epsilon} \times \left[\frac{\sigma^{B/D}(\rho_{t} > \rho_{t}^{min})}{\sigma^{B/D}(\Phi^{\mu^{\pm}/\mu^{-}\mu^{+}})}\right]_{MC}$$

$$= \frac{N_{\mu^{\pm}/\mu^{-}\mu^{+} \leftarrow B/D}(\Phi^{\mu^{\pm}/\mu^{-}\mu^{+}})}{\int Ldt} \times \frac{1}{\epsilon}$$

$$\times F_{\mu^{\pm}/\mu^{-}\mu^{+} \leftarrow B/D}^{MC}(\Phi^{\mu^{\pm}/\mu^{-}\mu^{+}}, \rho_{t}^{min})$$

* $\Phi^{\mu^{\pm}/\mu^{-}\mu^{+}}$ denotes a special kinematic phase space of $\mu^{\pm}/\mu^{-}\mu^{+}$.

4□ > 4□ > 4□ > 4□ > 4□ > 900

Input Data

Data Properties

PDC06 (Physics Data Challenge 06) data are used. single muons (μ^{\pm}) correlat

correlated un-like sign dimuons $(\mu^-\mu^+)$

1 single muon trigger (at least one moun in $-4 < \eta < -2.5$ with $p_t > 0.5$ GeV)

dimuon trigger (at least two muons in $-4 < \eta < -2.5$ with $p_t > 0.5$ for each muon)

2 7.8×10^8 single muon events

2.5 × 10⁶ correlated dimuon events
 1.5 GeV < pt < 18 GeV

3 2 GeV $< p_t < 10$ GeV 4 extrapolate to 2 GeV $< p_t < 20$ GeV

1 Assuming the contribution of $\mu^{\pm}/\mu^{-}\mu^{+}$ \leftarrow resonances and un-correlated background are subtracted perfectly.

2 p_t dis. of μ^{\pm} and $M_{\mu^+\mu^+}$ dis. of correlated $\mu^-\mu^+$ are corrected by detection efficiency (p_t and η dependent).

3 $N_{\mu^{\pm}/\mu^{-}\mu^{+}\leftarrow D}$ are corrected with factor 11.2/5.67 to satisfy HvQMNR calculations.

 $\begin{array}{l} \mu^{\pm}/\mu^{-}\mu^{+} \leftarrow (J/\Psi,\rho\dots) \leftarrow Q \text{ are } \\ \text{not considered.} \\ \text{Statistics corresponding to data taking } \\ \text{scenario, } L = 10^{30} \text{cm}^{-2} \text{s}^{-1}, \ t = 10^{6} \text{s}. \\ \text{Fitting the total dis. of } p_{t} \text{ (single muon)} \\ \text{and } M_{\mu^{-}\mu^{+}} \text{ (correlated } \mu^{-}\mu^{+}) \text{ to get} \\ \text{the } N_{\mu^{\pm}/\mu^{-}\mu^{+} \leftarrow D/B} (\Phi^{\mu^{\pm}/\mu^{-}\mu^{+}}). \end{array}$

Extraction of the $N^{\mu^{\pm}/\mu^{-}\mu^{+}\leftarrow B/D}(\Phi^{\mu^{\pm}/\mu^{-}\mu^{+}})$

I. Fitting Formula

$$(T - B) \cdot (f_c + R \times f_b)$$

- T, total number of $\mu^{\pm}/\mu^{-}\mu^{+} \leftarrow HF$.
- f_c and f_b are the normaliszed shape functions.

II. Shape Functions for μ^{\pm} p_t dist.

$$f_{c/b} = c \times \frac{1}{(1 + (p_t/a)^2)^b}$$

- $lackbox{f f }$ both the μ^\pm p_t dis. from charm and bottom use the some shape function
- a, b and c are free parameters

III. Shape Functions for $M_{\mu^-\mu^+}$ dist.

$$f_c = p0 \cdot \exp\left[-\frac{1}{2}\left(\frac{x - p1}{\rho 2}\right)^2\right] + p3 \cdot \exp\left[-\frac{1}{2}\left(\frac{x - p4}{\rho 5}\right)^2\right] + p6 \cdot \frac{1 + p7 \cdot (x - p8)}{\left[\rho 9^2 + (x - p8)^2\right]^{p10}}$$

$$f_b = \rho 0 \cdot \exp\left[-\frac{1}{2}\left(\frac{x-\rho 1}{\rho 2}\right)^2\right] + \rho 3\left\{\frac{1+\rho 4\cdot(x-\rho 5)}{[\rho 6^2+(x-\rho 5)^2]^{\rho 7}} + \rho 8\cdot \exp\left[-\frac{1}{2}\left(\frac{x-\rho 9}{\rho 10}\right)^2\right]\right\}$$

IV. Extraction of the (di)muon Yield from B & D Hadron Decay

$$N_{\mu}\pm_{/\mu}-_{\mu}+_{\leftarrow B}(\Phi)=B\cdot\int_{\Phi}\mu\pm_{/\mu}-_{\mu}+_{\sigma}\Delta\cdot f_{b}(x),\quad N_{\mu}\pm_{/\mu}-_{\mu}+_{\leftarrow D}(\Phi)=B/R\cdot\int_{\Phi}\mu\pm_{/\mu}-_{\mu}+_{\sigma}\Delta\cdot f_{c}(x)$$

 $\Phi = \Phi^{\mu^\pm/\mu^-\mu^+}$ is the special kinematic phase space $\mu^\pm/\mu^-\mu^+.$

4□ > 4□ > 4 = > 4 = > = 90

Extraction of the $N^{\mu^{\pm}/\mu^{-}\mu^{+}\leftarrow B/D}(\Phi^{\mu^{\pm}/\mu^{-}\mu^{+}})$

Data Extrapolation for single muons

Data Extrapolation for $\mu^-\mu^+$

Three kinds of Data Taking Scenarios

- scenario one, $L = 10^{30} \text{cm}^{-2} \text{s}^{-1}$, $t = 10^6 \text{s}$, $N_{pp} = 7 \times 10^{10}$
- lacktriangle scenario two, $L=3 imes10^{30} {
 m cm}^{-2} {
 m s}^{-1}$, $t=10^6 {
 m s}$, $N_{pp}=2.1 imes10^{11}$
- scenario three, $L=3\times 10^{30} {\rm cm}^{-2} {\rm s}^{-1}$, $t=10^7 {\rm s}$, $N_{pp}=2.1\times 10^{12}$ Large yield and significance expected even with scenario one.

4 D > 4 A > 4 B > 4 B > 9 Q C

Calculation of $F_{MC}^{\mu^{\pm}/\mu^{-}\mu^{+}\leftarrow B/D}(p_{t}^{min}, \Phi^{\mu^{\pm}/\mu^{-}\mu^{+}})$

$$\begin{split} F_{MC}^{B/D} &= F_{\mu^{\pm}/\mu^{-}\mu^{+} \leftarrow B/D}(\Phi^{\mu^{\pm}/\mu^{-}\mu^{+}}, p_{t}^{min}) = \frac{\sigma^{B/D}(p_{t} > p_{t}^{min})}{\sigma^{B/D}(\Phi^{\mu^{\pm}/\mu^{-}\mu^{+}})} = \frac{N^{B/D}(p_{t} > p_{t}^{min})}{N^{B/D}(\Phi^{\mu^{\pm}/\mu^{-}\mu^{+}})} \\ N^{B/D}(\Phi^{\mu^{-}\mu^{+}}) &= N^{H\bar{H} \rightarrow \mu^{-}\mu^{+}}(\Phi^{\mu^{-}\mu^{+}}) + N^{H \rightarrow \mu^{-}\mu^{+}}(\Phi^{\mu^{-}\mu^{+}}) \end{split}$$

- **1** $N^{B/D}(p_t > p_t^{min}) = S_1$
- **2** $N^{B/D}(\Phi^{\mu^-\mu^+}) = S_2$
- **3** p_t^{min} is determined by setting $S_3/S_2 \approx 90\%$, which is used to minimize the model dependence of the spectrum shape.

40.40.41.41.1.000

Systematic Error Estimation

Method for Single muons

- Choosing different perturbative scales and quark masses to generate new kinematics distributions for B & D hadrons. ★[hep-ph/0601164]
- $oldsymbol{2}$ Using different fragmentation functions within the hadronization process. $[\star]$
- 3 Re-fit the new μ^{\pm} p_t spectrum, which from heavy hadron decay, with the same fitting formula.
- R fixed within 60%, only combination with $\chi^2/NDF < 100$.

Method for correlated $\mu^-\mu^+$

- **1** Shape functions $(f_{c/b})$ are changed by adjusting their fitting parameters handly.
- 2 Re-fit the total $M_{\mu^-\mu^+}$ with the new fitting functions.
- 3 The shapes which lead R changing beyond 60% are discarded.

Systematic Error Estimation

Mean value of sys. error for single muons

Mean value of sys. error for correlated $\mu^-\mu^+$

- 2 Syst. errors are almost independent with p_t of μ^{\pm} and $M_{\mu^-\mu^+}$ of correlated $\mu^-\mu^+$.
- 3 single muon case, syst. error \sim 15% for charm \sim 20% for beauty
- $\begin{array}{ll} \textbf{4} \ \ \text{correlated} \ \mu^-\mu^+ \ \text{case,} \\ \text{syst. error} & \sim 20\% \ \text{for charm} \\ \sim 15\% \ \text{for beauty} \end{array}$
- Our measurement should allow to constrain models.

Results

- Input distributions are well reconstructed by our method.
- 2 Nice agreement between single muon and dimuon channels.
- Statistics errors are negligible even in the so-called scenario one.
- Systematics errors are 20% for B and 15% for D in the single muon channel and, 15% for B and 20% for D in the dimuon channel.
- $\mathbf{5} \ \ 82\% \ (17\%) \ \text{of} \ \sigma^B \ (\sigma^D) \ \text{are reconstructed via single muons and, } 84\% \ (33\%) \ \text{of} \ \sigma^B \ (\sigma^D) \ \text{are reconstructed via dimuons.}$
- \odot Our measurements allow to cover the p_t range from 2 GeV to 25 GeV (3 GeV to 15 GeV) for bottom (charm) component.

200

Conclusion & Outlooks

Conclusion

- The measurement of the B & D hadron cross sections in pp collisions at the LHC is an important benchmark for,
 - NLO pQCD calculation,
 - pA and AA collisions.
- 2 The B (D) hadron cross section can be extracted for 2 (3) GeV $< p_t^{min} < 25$ (15) GeV.
- 3 Statistical errors are negligible and systematics errors are about 15% and 20%, depending on the physics channel.
- Our results are strongly model dependent.

Outlooks

- Realistic background ($\pi \& K$) subtraction, an other source of error on the muon yield in particular at low p_t , work progress.
- Measurement of the B & D hadron cross section in pp collisions at 10 TeV.

Thanks!