QGP tomography with direct photons and jets

Yaxian Mao, Presented by Daicui Zhou

Institute of Particle Physics, CCNU, Wuhan

(for the ALICE collaboration)
The QCD medium

A new state of matter is produced in heavy-ion collisions at RHIC: parton degrees of freedom with hydrodynamic properties of a liquid

Several observations lead to this conclusion:

- Energy densities reached exceed the critical temperature at which LQCD predicts a phase transition
- Large elliptic flow established during the early partonic phase
- Quark scaling
- Very low viscosity
- Jet quenching
Auto-generated probes:
- hard scattered partons traversing the dense formed medium are modified → observed as reduction of high pt hadrons (jet fragments)
- direct photon traverse the medium unaffected

The measurement:
- Particle species spectra
 1. $\sigma (p_T^h)$
 2. $R_{AA} = \sigma_{AA}/(\text{Norm} \times \sigma_{pp})$

Measurement does not strongly constrain the interaction mechanism or the medium properties
jet-quenching: more exclusive measurement

The measurement:
- Particle species spectra
 1. $\sigma (p_T^h)$
 2. $R_{AA} = \sigma_{AA}/(\text{Norm} \times \sigma_{pp})$
- Fragmentation function
 1. $FF \left(z = p_T^h/E_{jet} \right)$
 2. $R_{FF} = FF_{AA}/(\text{Norm} \times FF_{pp})$

- Difficult to reconstruct jet in HI environment

- High p_T suppression

- Low p_T enhancement

$\xi = \ln\left(\frac{E_{\text{jet}}}{p_{\text{hadron}}} \right)$

$\Delta E \propto \hat{q} \cdot L^2$

$\frac{d\Delta E}{dz} \propto \hat{q} \cdot L$

\hat{q}

Borghini and Wiedemann, hep-ph/0506218

OPAL, $\sqrt{s} = 192–209$ GeV
- in vacuum, $E_{\text{jet}} = 100$ GeV
- in medium, $E_{\text{jet}} = 100$ GeV

TASSO, $\sqrt{s} = 14$ GeV
- in vacuum, $E_{\text{jet}} = 7$ GeV
- in medium, $E_{\text{jet}} = 7$ GeV

$p_T^{\text{hadron}} \sim 2$ GeV for $E_{\text{jet}} = 100$ GeV
jet-quenching: even more exclusive measurement (the golden one)

- **Direct photon - jet**
 - The photon 4-momentum remains unchanged while traversing the medium and sets the reference of the hard process
 - Balancing the hadron and the photon provides a measurement of the medium modification experienced by the jet
 - Allows to measure jets in an energy domain ($E_{\text{jet}} < 50$ GeV) where
 - The jet looses a large fraction of its energy ($\Delta E_{\text{jet}} \approx 20$ GeV)
 - The jet cannot be reconstructed in the AA environment
Toward a true tomography measurement of QCD medium in AA (X. N. Wang)

- The azimuthally misaligned back to back jets (from a 2->2 hard process) may add to k_T, which is a measure of qhat:

$$\langle \Delta q_T^2 \rangle = \int dy \hat{q}(y, E)$$

- Triggering γ-hadrons correlation measurement with hadrons of various x_E allows to select the production point of the hard scattering:
 - large x_E, contributions to CF come mostly from hard scattering at the surface;
 - small x_E, contributions to CF are mostly from hard scattering inside the volume.

- **What can be measured with ALICE?**
ALICE: dedicated HI Experiment

EMCAL: $|\eta|<0.7$
$\Delta \phi: 110^\circ$

E $> 10 \text{ GeV} \rightarrow \Delta E/ E < 3 \%$
$\sigma_x = [3,50] \text{ mm}$

TPC: $|\eta|<0.9$
$\Delta \phi: 2\pi$

Tracking System resolution
$\Delta p/ p = 2\%$, $\alpha = 1.1^\circ$

PHOS: $|\eta|<0.125$
$\Delta \phi: 100^\circ$

E $> 10 \text{ GeV} \rightarrow \Delta E/ E < 1.5\%$
$\sigma_x = [0.5,2.5] \text{ mm}$
γ-hadron correlations in ALICE

- **Strategy (event by event):**
 - Search identified prompt photon (PHOS or EMCal) with $E_\gamma > 20$ GeV
 - Search for all charged hadrons (central tracking) or neutral π^0 (EMCal or PHOS):
 - $90^\circ < \phi_\gamma - \phi_{\text{hadron}} < 270^\circ$

- **Background:**
 - Decay photons misidentified as isolated photon
 - Soft hadrons from the underlying event (UE):
 - take the hadrons from the same side of direct photons as UE
Correlation Function (CF) and I_{AA}

$X_E = -\mathbf{p}_T \cdot \mathbf{p}_T\gamma / |\mathbf{p}_T\gamma|^2$

$\frac{I_{AA}}{I_{PP}} = \frac{CF_{AA}}{CF_{PP}}$

- Statistical errors correspond to one standard year of data taking with 2 PHOS modules.
- Systematic errors from decay photon contamination and hadrons from underlying events.
"$<k_T>$ in γ-jet at LHC"

- Extrapolated from existing measurements by PYTHIA tuning:

\[k_T \text{ extrapolated from existing experiments} \]

- Intrinsic k_T (PARP(91)) and ISR/FSR on $<p_T>_{\text{pair}} = <p_T>_\gamma\text{-jet}$

\[<k_T> = <p_T>_{\text{pair}} / \sqrt{2} \]

- Fitting function:

\[<p_T>_{\text{pair}} = A \log_{10}(B \sqrt{s}) \]

- \(A = 2.06 \pm 0.171\)
<p_T>_{\text{pair}} dependence on p_T

Reference: \(\gamma \)-parton pair:

<table>
<thead>
<tr>
<th></th>
<th>A (GeV/c)</th>
<th>B (Gev/c)^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>-----</td>
<td>3.63 ± 1.4</td>
<td>0.05 ± 0.0</td>
</tr>
</tbody>
</table>

Fitting:

\[<p_T>_{\text{pair}} = A + B * p_T \]

Measurement: \(\gamma \)-jet pair:

<table>
<thead>
<tr>
<th>R</th>
<th>A (GeV/c)</th>
<th>B (Gev/c)^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>8.49 ± 3.01</td>
<td>0.04 ± 0.05</td>
</tr>
<tr>
<td>0.7</td>
<td>4.82 ± 1.91</td>
<td>0.07 ± 0.04</td>
</tr>
<tr>
<td>0.4</td>
<td>3.42 ± 1.45</td>
<td>0.10 ± 0.0</td>
</tr>
<tr>
<td>0.2</td>
<td>3.19 ± 1.19</td>
<td>0.13 ± 0.04</td>
</tr>
</tbody>
</table>
Leading particles with medium length (L) traversed

- High x leading particles come mostly from h.s. at the surface
- Low x leading particles come mostly from h.s. in the volume

However separation not very much pronounced!!
CF (differ x_E) dependence on L

- Ratio of quenched to unquenched scenario with x_E selection on CF

$\text{CF (with UE) ratio with and without quenching}$

$p+p \rightarrow X, \text{@} 5.5\text{TeV}$

$Q = 36\text{GeV}^2/\text{fm}$

$\Delta \phi = (1.5, 4.5)$

$x_E < 0.2$

$x_E > 0.8$
Conclusion

- Medium effect could be measured by γ-hadrons correlation:
 - Modification of the photon tagged jet fragmentation function -> medium properties
 - Detailed tomography of HI collision is in "theory" possible
 - k_T from pp to HI is an additional way to infer the medium property

- The measurement is challenging but worth the effort

- Let’s take a break…until LHC tell us the truth!
Acknowledgement

- To the organizers
- To Daicui Zhou, Yves Schutz, Xin-Nian Wang, Andreas Morsch, Peter Jacobs …for useful discussions
- To full Wuhan-ALICE group
- To full ALICE collaboration

THANKS FOR ALL!
Back up
What is k_T?

- Two partons (with hat) back to back in CM
- At an angle in lab frame due to k_T
- Fragment into final hadrons (no hat)
- $\langle k_T \rangle = \langle p_T \rangle_{\text{pair}} / \sqrt{2}$
Strong dependence on jet reconstruction (R) !?

Fitting:
\[<p_T>_{\text{pair}} = A + B \times p_T \]

<table>
<thead>
<tr>
<th>R</th>
<th>A (GeV/c)</th>
<th>B (GeV/c)^{-1}</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6.25±2.56</td>
<td>0.10±0.05</td>
</tr>
<tr>
<td>0.7</td>
<td>2.84±1.56</td>
<td>0.16±0.05</td>
</tr>
<tr>
<td>0.4</td>
<td>1.42±1.45</td>
<td>0.21±0.05</td>
</tr>
<tr>
<td>0.2</td>
<td>-</td>
<td>0.24±0.05</td>
</tr>
</tbody>
</table>

Yaxian.Mao@QNP09, Beijing
\(\langle p_T \rangle_{\text{pair}} \) from leading-leading

Fitting:
\[\langle p_T \rangle_{\text{pair}} = A + B \times p_T \]

<table>
<thead>
<tr>
<th>(A) (GeV/c)</th>
<th>(B) (GeV/c(^{-1}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0.45 ± 0.4</td>
<td>0.07 ± 0.0</td>
</tr>
<tr>
<td>3.27 ± 1.4</td>
<td>0.07 ± 0.0</td>
</tr>
</tbody>
</table>

Delta phi between 2 leadings:

- Entries: 49753
- Mean: 14.1
- RMS: 11.08
- \(\chi^2 / \text{ndf} \): 198.2 / 27
- Constant: 1.589e04 ± 1.085e02
- MPV: 7.543 ± 0.039
- Sigma: 3.531 ± 0.025
Approach to confirm...

1) Generate γ-jet events ($E_\gamma > 20$ GeV) with PYTHIA generator with and without quenching (QPYTHIA)

2) Get the jet production point (x_0, y_0) inside AA geometry from Fast Glauber model

3) Calculate the traversed medium length (L) based on direction of hard scattered parton using Fast Glauber

4) Search leading hadron with the highest p_T
Phi correlation (leading and γ)

Quenching effect:
- loss of high x leading particles
- broadening of the $\Delta \Phi$ correlation at low x
- $x = 0.2 \rightarrow p_T \sim 4$ GeV/c

No quenching

the found lp comes from the UE
No quenching

- Quenching produces more low x particles from h.s. occurring in the volume (large L)
Leading particle distribution: $x = \frac{p_T}{p}$

- Quenching will generate more low x particles
- More fake leading particles from underlying events will be found due to the quenching
Medium effect for high p_T leading particles

Leading particles with:
- charge only
- $x > 0.8$

- Suppression stronger for parton traversing large L
- But L dependence is not very pronounced
Medium effect for low p_T leading particles

Leading particles with:
- charge only
- $x < 0.2$

- Opposite to before: Enhancement stronger for traversing large L
- Again L dependence is not very pronounced
Particles are generated symmetric if no quench is applied due to the L calculation approach.

High p_T leading particles have higher probability to come from the surface than to the volume.
Gamma+lp triggered x distribution

- Ratio of quenched to unquenched scenario