

QGP tomography with direct photons and jets

Yaxian Mao, Presented by Daicui Zhou

Institute of Particle Physics, CCNU, Wuhan

(for the ALICE collaboration)

The QCD medium

- A new state of matter is produced in heavy-ion collisions at RHIC: parton degrees of freedom with hydrodynamic properties of a liquid
- Several observations lead to this conclusion:
 - Energy densities reached exceed the critical temperature at which LQCD predics a phase transition
 - Large elliptic flow established during the early partonic phase
 - Quark scaling
 - Very low viscosity
 - Jet quenching

jet-quenching: first measurement

- The measurement:
 - Particle species spectra
 1. $\sigma(p_T^h)$

 - $R_{AA} = \sigma_{AA}/(Norm \times \sigma_{pp})$ 2.

• hard scattered partons traversing the dense formed medium are modified → observed as reduction of high pt hadrons (jet fragments)

24/09/2009

• direct photon traverse the medium unaffected

Measurement does not strongly constrain the interaction mechanisme or the medium properties

jet-quenching: more exclusive measuremer

• Difficult to reconstruct jet in HI environment

- ☐ The measurement:
 - Particle species spectra
 - 2. $R_{AA} = \sigma_{AA}/(Norm \times \sigma_{pp})$
 - □Fragmentation function
 - 1. FF ($z = p_T^h / E_{jet}$)

2.
$$R_{FF} = FF_{AA}/(Norm \times FF_{pp})$$

24/09/2009

jet-quenching: even more exclusive measurement (the golden one)

- Direct photon jet
 - The photon 4-momentum remains unchanged while traversing the medium and sets the reference of the hard process
 - Balancing the hadron and the photon provides a measurement of the medium modification experienced by the jet
 - Allows to measure jets in an energy domain (E_{jet} < 50 GeV) where
 - The jet looses a large fraction of its energy ($\Delta E_{\rm jet} \approx$ 20 GeV)
 - The jet cannot be reconstructed in the AA environment

Toward a true tomography measurement of QCD medium in AA (X. N. Wang)

The azimuthally misaligned back to back jets (from a 2->2 hard process) may add to k_T, which is a measure of qhat:

$$\langle \Delta q_T^2 \rangle = \int dy \hat{q}(y, E)$$

- Triggering γ-hadrons correlation measurement with hadrons of various x_E allows to select the production point of the hard scattering:
 - large x_E, contributions to CF come mostly from hard scattering at the surface;
 - small x_E, contributions to CF are mostly from hard scattering inside the volume.

FIG. 3: (color online). Transverse spatial distributions of the initial γ -jet production vertexes that contribute to the final observed γ -hadron pairs along a given direction (arrows) with $z_T \approx 0.9$ (upper panel) and $z_T \approx 0.3$ (lower panel).

ALICE: dedicated HI Experiment

Δφ: 2π

Tracking System resolution

 $\Delta p/p = 2\%, \alpha = 1.1^{\circ}$

Δφ: 100° $E > 10 \text{ GeV} \rightarrow \Delta E/E < 1.5\%$

PHOS: |η|<0.125

 $\sigma_v = [0.5, 2.5] \text{ mm}$

TRD: $|\eta| < 0.9$ φ: 2π*

HMPID: |η|<0.6

 $\Delta \phi = 57.6^{\circ}$

TOF: |η|<0.9 φ: 2π*

*Holes are made in front of 3 PHOS modules

γ-hadron correlations in ALICE

Strategy (event by event):

- Search identified prompt photon (PHOS or EMCal) with $E_{v} > 20 \text{ GeV}$
- Search for all charged hadrons (central tracking) or neutral π^0 (EMCal or PHOS):

• 90° < ϕ_{γ} - ϕ_{hadron} < 270°

Background:

- Decay photons misidentified as isolated photon
- Soft hadrons from the underlying event (UE):
 - take the hadrons from the same side of direct photons as UE

Correlation Function (CF) and I_{AA}

EPJC (2008) 57: Y. Mao $X_E = -p_{T_h} \cdot p_{T_{\gamma}} / |p_{T_{\gamma}}|^2$

CF ratio from AA and from pp

- Statistical errors correspond to one standard year of data taking with 2 PHOS modules.
- Systematic errors from decay photon contamination and hadrons from underlying events.

<k_T> in γ -jet at LHC

 Extrapolated from existing measurements by PYTHIA tuning:

k_T extrappolated from existing experiments

Intrinsic k_T
 (PARP(91)) and
 ISR/FSR on

$$_{pair} = _{y \text{-jet}}$$

 $= _{pair} / \sqrt{2}$

• fitting function:

$$< p_T >_{pair} = A*log_{10}(B* \sqrt{s})$$

$$\sqrt{s}$$
 (8°4))9/2009 $A = 2.06 \pm 0.1$

<p_T>pair dependence on p_T

pt pair vs. generated p₊ bins

E HAIN.	
H#111 ¹ 1 X	Mean 30.93
₽ ₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽₽	RMS 27.49
H 1	χ² / ndf 147.9 / 37
∃ 1 1 ,	Constant 1600 ± 27.8
	MPV 12.99 ± 0.20
₽ №.	Sigma 6.101 ± 0.129

Y⁰0x1a20. M400 (a60) N80() 9,10B e 120 g140 160 180 200 p^{pair} (GeV/c)

Reference: γ –parton pair:

A (GeV/c)	B (Gev/c) ⁻¹
 3.63±1.4 0	0.05±0.0 3

Fitting:

$$\langle p_T \rangle_{pair} = A + B * p_T$$

Measurement: γ –jet

pair:	A (GeV/c)	B (Gev/c) ⁻¹
R =1	8.49±3.01	0.04 ± 0.05
R = 0.7	4.82±1.91	0.07 ± 0.04
R = 0.4	3.42±1.45	$0.10 \pm .0.0$
R = 0.2	3.19±1.19	0.13±0.04

- ➤ High x leading particles come mostly from h.s. at the surface
- Low x leading particles come mostly from h.s. in the volume

However separation not very much pronounced!!

CF (with UE) ratio with and without quenching

• Ratio of quenched to unquenched scenario with k

Conclusion

- Medium effect could be measured by γhadrons correlation:
 - Modification of the photon tagged jet fragmentation function -> medium properties
 - Detailed tomography of HI collision is in "theory" possible
 - k_T from pp to HI is an additionnal way to infer the medium property
- The measurement is challenging but worth the effort
- Let's take a break...until LHC tell us the truth!

Acknowledgement

- To the organizers
- To Daicui Zhou, Yves Schutz, Xin-Nian Wang, Andreas Morsch, Peter Jacobs ...for useful discussions
- To full Wuhan-ALICE group
- To full ALICE collaboration

THANKS FOR ALL!

Back up

What is k_T ?

- Two partons (with hat) back to back in CM
- At an angle in lab frame due to k_T
- Fragment into final hadrons (no hat)

$$<\mathbf{k}_{\mathrm{T}}> = <\mathbf{p}_{\mathrm{T}}>_{\mathrm{pair}}/\sqrt{2}$$

T>pair in jet-jet even

pt pair vs. generated p_ bins

Strong dependence on jet reconstruction (R)!?

Fitting:

Delta phi between 2 jets and pair of pt

$$\langle p_T \rangle_{pair} = A + B * p_T$$

A (GeV/c)

 6.25 ± 2.56

 2.84 ± 1.56

	A (GeV/c)	B (Gev/c) ⁻¹	
	3.27 ± 1.4	0.07 ± 0.0	
	6	3	
	U	J	
18 Vavi	Yaxian.Mao@QNP09, Beijing		

$$R = 0.4$$

R = 1

R = 0.7

24/09/2009

$$1.42 \pm 1.45$$
 0.21 ± 0.05

$$R = 0.2$$

$$0.24 \pm 0.05$$

B (Gev/c)⁻¹

 0.10 ± 0.05

 0.16 ± 0.05

hPair2J_py

T>pair from leading-leading

pt pair vs. generated p_T bins

Fitting:

$$< p_T >_{pair} = A + B * p_T$$

A (GeV/c)	B (Gev/c) ⁻¹
 0.45 ± 0.4	0.07 ± 0.0
 3.27 ± 1.4	_
6	3

24/09/2009

Approach to confirm...

1) Generate γ -jet events ($E_{\gamma} > 20$ GeV) with PYTHIA generator with and without quenching (QPYTHIA)

- 2) Get the jet production point (x₀, y₀) inside AA geometry from Fast Glauber model
- 3) Calculate the traversed medium length (L) based on direction of hard scattered parton using Fast Glauber
- 4) Search leading hadron with the highest p_T 24/09/2009

Phi correlation (leading and)

 $\Delta \phi$ and x without quenching (charge only)

Quenching effect:

- loss of high x leading particles
- broadening of the $\Delta \Phi$ correlation at low x
- x = 0.2 -> $p_T \sim 4 \text{ GeV/c}$

Medium length traversed by parton

• Quenching produces more low x particles from h.s. occurring in the volume (large L)

Leading particle distribution: x =

fraction of leading particle (charge only) and photon

 $\Delta \phi$ between leading particle (charge only) and photon

- Quenching will generate more low x particles
- More fake leading particles from underlying events will be found due to the quenching

Medium effect for high p_T leading

Particles Charge only) with pt fraction of γ larger than 0.8

Leading particles with:

- charge only
- x > 0.8

 Suppression stronger for parton traversing large L

 But L dependence is not very pronouncec

Medium effect for low p_T leading particles

Leading particles with:

- charge only
- x < 0.2

Opposite to before: **Enhancement** stronger for traversing large L

Again L dependence is not very pronounced Yaxian.Mao@QNP09, Beijing

L dependence (II)...ratio

ratio of leading particles (charge only) with x>0.8 over x<0.2

- Particles are generated symmetric if no quench is applied due to the L calculation approach
- High p_T leading particles have higher probability to come from surface than to the volume.

Gamma+lp triggered x

dietrihution

CF ratio with and without quenching

• Ratio of quenched to unquenched scenario

