Derivation of a 1/r² Potential Term for QQ-bar in a Potential Model

Takayuki Matsuki (Tokyo Kasei U.) Xiang Liu (Lanzhou U.) T. Morii (Kobe U.) K. Seo (Gifu Women's College)

Based on

- Isgur-Wise Function in a semi-relativistic potential model, Prog. Theor. Phys. 118 (2007) . 1087-1114 (hep-ph/0703158)
- Structure of mass gap between two spin multiplets, Phys. Lett. B659 (2007) 593 (hep-ph/0710.0325)
- Radial Excitations of Heavy-Light System, Eur. Phys. J. C31(2007) 701
- New Heavy-Light Mesons $Q\overline{q}$,
 - Prog. Theor. Phys. 51 (2007) 1077 (hep-ph/0605019)
- 0^+ and 1^+ States of *B* and B_s Mesons,

Phys. Lett. B606 (2005) 329 (hep-ph/0411034)

• Spectroscopy of heavy mesons expanded in $1/m_Q$, Phys. Rev. D56 (1997) 5646 (hep-ph/9702366)

T. MATSUKI 09/09/24

Contens

- 1. What is a reason why we succeed in predicting/reproducing mass levels
- 2. Definition of true vacuum
- 3. Various transformations to derive models
- 4. Make a list of models depending on if they satisfy criteria or not, i.e., starting from the dominant vacuum, including negative energy states, etc.
- 5. Derive $1/r^2$ term for $Q\overline{Q}$ state by using the Foldy-Tani-Wouthuysen transformation : with a positive coefficient contrary to Koma-Koma-Wittig results
- 6. Recent/Future experiments to confirm our model

Where the point is

- $D_{s0}^{*}(2317) \& D_{s1}^{'}(2460)$ were found by BaBar and CLEO
- Conventional potential model fails to explain only these two (GIK)
 - Do we need new dynamics?
 - Do we need a new concept ?
 - Do we need a tetra-quark?

- May need to explain only these two by some other mechanism (e.x., molecular state): *typical attitude these days*
- Numerical results of our model
 - Succeed in predicting/reproducing the experiments for heavy hadrons
- Reasons why our model succeeds while others do not
 - true vacuum in HQET ?!

True Vacuum in HQET

- true vacuum in heavy hadrons
 - Theory should be expanded around it
 - Transformation should be unitary
- Approximation is different from transformation
 - Intuitive approximation : does not change the vacuum ->
 in principle the same parameters as before; higher order interactions are
 the same as before
 - Transformation : change the vacuum -> <u>change light quark mass</u> <u>values</u> (reason why m_u=300 MeV in GIK while m_u=85 MeV in MMS); <u>higher order interactions become different</u> from the original
- Classify all models into those with approximation or transformation

HQET in Field Theory

• HQET

- Approximation first proposed by Eichten and Hill
 - be at rest = propagator in configuration space $\propto \delta^3 (x x') \theta(t t')$
 - propagator in momentum space $\propto 1/(p_0 + i\varepsilon) \rightarrow 1/(v \ p + i\varepsilon)$
- Georgi Transformation for the wave function
 - velocity-dependent Lagrangian in a Lorentz invariant form

$$- L = \overline{\psi} (i \not\partial - m) \psi = \overline{\psi}_{v} i v \partial \psi_{v}$$

- To obtain this Lagrangian, Georgi propopsed the transformation
- $-1) \ \psi \to \exp(im\psi \ v \ x)\psi_v \quad \text{non-unitary}$
- 2) $\psi \rightarrow \frac{1+\psi}{2} \exp(im\psi x)\psi_{\psi}$ unitary (improved) with projection op. Separation of $\psi_{\nu+}$ and $\psi_{\nu-}$ in the Lagrangian

Georgi Transformation

- $\psi \to \frac{1+\psi}{2} \exp(imv x)\psi_{v}$ improved expression
 - $\exp(imv x)\psi$ momentum shift operator (unitary)
 - $i \not { \partial } \to i \not { \partial } + m \not { \partial } \to i \not { \partial } + m$
 - because projection operator is multiplied

$$- \frac{1+\nu}{2}\nu = \frac{1+\nu}{2} \quad \text{i.e.,} \quad \nu \to 1 \text{ and also } \quad \overleftarrow{\partial} \to \nu \ \partial$$

- Projection operator is inserted by hand (not derived)
- Actually it is derived by taking the transformation $- \psi \rightarrow \exp(imv x)\psi_{v} \qquad \text{proposal (without projection operator)}$ $- L = \overline{\psi}(i\not\partial - m)\psi = \overline{\psi}_{v}(i\not\partial + m\notv - m)\psi_{v}$ $- (m\notv - m)\psi_{v} = -m(1 - \notv)\psi_{v} = 0 \quad \text{lowest order in } 1/m, \text{ or } \frac{1 + \notv}{2}\psi_{v} = \psi_{v}$ - using this, we have in the lowest order

- $L = \overline{\psi} (i \partial - m) \psi = \overline{\psi}_v i v \partial \psi_v$ the same form as the original

T. MATSUKI 09/09/24

QNP09

HOET in Potential Model

• HQET in our model

- lowest approximation adopted by MM (Matsuki and Morii)
 - Dominant wave function = positive energy state = Q_+
 - Heavy quark free energy $Q^{\dagger}(ip \ \alpha + m\beta)Q \rightarrow Q^{\dagger}_{FWT}\sqrt{m^2 + p^2\beta Q_{FWT}}$
- Foldy-Tani-Wouthuysen Transformation for the wave function
 - dominant positive energy state (diagonalize kinetic term)

 $E(1-\beta)\psi_{FTW}=0$

- To obtain this kinetic term for heavy quark, FWT gives
- $-\psi \to \exp(W \hat{p} \gamma)\psi_{FTW} \quad \tan W = p/(m+E) \quad : \text{ our choice}$
- Expanding the Hamiltonian, energy, and wave function in 1/m, we obtain $m(1-\beta)\psi_{FTW} = 0$ or $\frac{1+\beta}{2}\psi_{FTW} = \psi_{FTW}$ and DsJ mass values lower than the thresholds (effective light quark mass : $m_u+b=85$ MeV after chiral symmetry is broken and before heavy quark symmetry is not broken) T. MATSUKI 09/09/24 QNP09 7

Lowest FTW Transformation

- Consider the following transformation instead of FTW
 - first order in 1/m (unitary)

 $\psi \to \exp(W \ \hat{p} \ \gamma) \psi_{LFTW} \begin{pmatrix} 1 & -\frac{\sigma \ p}{2m} \\ \frac{\sigma \ p}{2m} & 1 \end{pmatrix} \psi_{LFTW}, \quad \tan W = p / (2m)$

• which gives

$$U_{LFWT}(-p)\left(\alpha \cdot p + \beta m\right)U_{LFWT}^{-1}(p) = \beta \left(m + \frac{p^2}{2m}\right) - \frac{p^2}{m^2}\alpha \cdot p + O(x^3)$$

• Up to 1/*m*, these terms give the same interactions as those of FTW, hence we <u>could start from this transformation</u> for the heavy hadrons (including at least one heavy quark) if calculating only up to 1/*m*.

T. MATSUKI 09/09/24

QNP09

Bloch Transformation

- Possible to separate positive and negative energy state completely in a potential model = Bloch transformation
 - TM and K. Seo or Appendix of MMS (PTP, 51 1077 (2007))
- which gives complete projection on positive energy eigenstate
 (too complicated to show here)

$$H_{eff}(P_{+}P_{+}\psi_{j}) = E_{j}(P_{+}P_{+}\psi_{j})$$

• Solvable up to 1/m, but it includes V^2 terms, i.e., square of the coupling constant α_s^2

-
$$V = -\frac{4\alpha_s}{3}\frac{1}{r}$$
 one gluon exchange term

Free Fermion Field Transformation

• Consider the free fermion field transformation

$$\psi \rightarrow \begin{pmatrix} \sqrt{\frac{E+m}{2E}} & 0\\ \frac{\sigma p}{\sqrt{2E(E+m)}} & 0 \end{pmatrix} \psi_{FFF} \begin{pmatrix} 1 & 0\\ \frac{\sigma p}{2m} & 0 \end{pmatrix} \psi_{FFF} = \begin{pmatrix} 1 & -\frac{\sigma p}{2m}\\ \frac{\sigma p}{2m} & 1 \end{pmatrix} \frac{1+\beta}{2} \psi_{FFF}$$

- non-unitary
- Adopted by many people, e.g., Morishita, Kawaguchi and Morii (PRD37, 159 (1988)), Zeng, Van Orden and Roberts (PRD52, 5229 (1995)), etc.
- They did not derive dominance of a positive energy state
- 1) the former paper mixed different order of interactions in 1/*m*, and 2) the latter paper adopted constituent light quark mass values

Various Models for D_(s)

Method	Authors	Successful or Not	True V.C.	Perturbation
Conventional P. M.	Godfrey, Isgur, Kokoski	2.48, 2.55 GeV	No	Yes
Rel. Potential Model	Morishita, Kawaguchi, Morii	2.525, 2.593	No	Yes
Rel. Potential Model	Matsuki, Morii, Sudoh	2.325, 2.467	Yes	Yes
Rel. Potential Model (Bloch)	Matsuki, Seo	2.297, 2.544	Yes	Yes
BS Model	Zeng, Orden, Roberts	2.38, 2.51	No	No
Another R. Potential Modle	Faustov, Galkin, Ebert	2.463, 2.535	No	Yes
Tetra-Quark	Cheng, Hou,Terasaki	Yes (Qualitative)	N/A	N/A
DK Molecule	Close et al.	Yes (Qualitative)	N/A	N/A
Coupled Channel Method	Beveren, Rupp	Yes (Wide Range)	N/A	N/A
Effective Lagrangian	Bardeen et al.	Phenomenology	Yes	Yes

- Potential Model
 - Bloch Method (Matsuki, Seo) : too accurate

N/A=Not Applicable Threshold values: D+K=2.367, D*+K=2.505 GeV

– Bardeen et al. : perturbation in effective field theory but no calculation

T. MATSUKI 09/09/24

Application to QQ-bar

- Apply FTW transformation to QQ-bar (m1=m2)
 - Obtain $1/r^2$ potential term with positive sign
 - No problem to solve it at the origin

$$H = (\alpha_{1} \cdot p + \beta_{1} m_{1}) + (-\alpha_{2} \cdot p + \beta_{2} m_{2}) + H_{int}$$

$$H_{int} = \beta_{1}\beta_{2}S + \left\{1 - \frac{1}{2} \left[\alpha_{1} \cdot \alpha_{2} + (\alpha_{1} \cdot n)(\alpha_{2} \cdot n)\right]\right\}V$$

$$\left(U_{total}HU_{total}^{-1}\right) \otimes \left(U_{total}\psi\right) = EU_{total}\psi, \quad U_{total} = U_{c}U_{FWT2}U_{FWT1}$$

$$1/r^{2} \text{ term}$$

• Non-trivial equation is given by

$$\frac{p^2}{m}\psi_{0+1}^{+,+} + \left[S(r) + V(r) + \frac{V^2}{4m}(\sigma_1 \sigma_2)^2 \otimes\right]\psi_{0+1}^{+,+} = E_{0+1}\psi_{0+1}^{+,+}$$

T. MATSUKI 09/09/24

V(r)² Term

• V² term may be drawn in a figure as follows

Mass difference of Xc and η_c

- Linear+Coulomb vs. linear + modified Coulomb •
 - Morishita, Oka, Kaburagi, Munakata and T. Kitazoe, Z. Phys. C 19 (1983) 167. _

Mass Spectra of D_s

- Successful prediction/reproduction of D_s mass spectra using our semirelativistic potential model
 - Lowering 0⁺ and 1⁺ of $D_{s0}^{*}(2317)$ and $D_{1}^{'}(2427)$ compared with other potential models

prediction by conventional potential model (Godfrey & Kokski, PRD43, 1679 (1991)) T. MATSUKI 09/09/24

Other Mass Spectra of Our Model

Our Numerical Values

					_		
J^{P}	$D(0^{-})$	$D(1^{-})$	$D(0^+)$	$D(1^+)$ T	hese two	o values de	etermine
observed	1867	2008	2308	2427 whether ours or molecular model			
predicted	1869	2011	2283	2421 si	ucceeds	or not	
1		Below <i>BK</i> / <i>B</i>*<i>K</i> threshold					
J^P	$D_{s}(0^{-})$	$D_{s}(1^{-})$	$D_{s}(0^{+})$	$D_{s}(1^{+})$	$D_{s}(1^{+})$	$D_s(2^{-1})$	Recent CDF
observed	1969	2112	2317	2460	2535	2572	data
predicted	1967	2120	2325	2467	2525	2568	1
	-						
J^P	$B(0^{-})$	$B(1^{-})$	$B(0^+)$	$B(1^{+})$	$B(1^{\dagger})$	$B(2^+)$	_
observed	5279	5325	_	_	5720	5745	
predicted	5270	5329	5621	5663	5720	5737	_
				/			-
J^{P}	$B_{s}(0^{-})$	$B_s(1^-)$	$B_{s}(0^{+})$	$B_{s}(1^{+})$	$B_{s}(1^{+})$	$B_{s}(2^{+})$	
observed	5369	_	_	-	5829	5839	-
predicted	5378	5440	5617	5682	5831	5847	
T. MATSUKI 09/0)9/24		QNP0	9			- 17

Radial Excitations of Ds

Predicted in 2007 "1+" with 3082 MeV as a radial excitation of Ds1(2460) (T. Matsuki, T. Morii, and K. Sudoh, Eur. Phys. J.A 31, 701 (2007))

Valuse of 0+ and 1+ of Bs

- These two values determine whether ours or molecular model is preferable or not
- Mass gap between predictions and threshold values
 - Ours : ~ 140 MeV
 - Molecular (B+K/B*+K) assumption : $\sim 40 \text{ MeV}$
- Wait for experiments of LHCb

Summary

- Clarify the difference of our model HQET and other potential models together with field theoretical HQET
 - Principle to construct a model = use transformation to derive dominant positive energy state in HQET
- Recent data DsJ(3040) by BaBar is very close to a radial excitation of Ds(1+) predicted as 3082 MeV in 2007 by our model
- Succeed in deriving $1/r^2$ potential term for $Q\bar{Q}$
 - Positive coefficient contrary to that by Koma-Koma-Wittig
 - Safe to solve the Schroedinger eq. near the origin