NEW RESULTS ON α_s FROM THE LATTICE AND HADRONIC τ DECAYS

K. Maltman, QNP09, Beijing

OUTLINE

- Context/tension between α_s from lattice, τ decay
- Recent updates of UKQCD/HPQCD lattice approach
- New results on the hadronic τ decay determination
- Future directions/issues

CONTEXT ETC.

• HPQCD/UKQCD, PRL95 (2005) 052002: perturbative analysis of UV-sensitive lattice observables [dominant input to PDG08 assessment $\alpha_s(M_Z) = 0.1176(20)$]

 $[\alpha_s(M_Z)]_{latt} = 0.1170(12)$

• ALEPH, OPAL [e.g., EPJC56 (2008) 305]: "(k,m) spectral weight" hadronic τ decay determination

 $[\alpha_s(M_Z)]_{\tau} = 0.1212(11)$

• c.f. other recent determinations [Bethke+: 0908.1135]

Source	$\alpha_s(M_Z)$
Global EW fit	0.1193(28)
H1+ZEUS NLO inclusive jets	0.1198(32)
H1 high- Q^2 NLO jets	0.1182(45)
Non-singlet structure functions	0.1142(23)
NNLO+NLLA LEP event shapes	0.1224(39)
NNLO+NLLA JADE event shapes	0.1172(51)
${\sf F}[{\Upsilon}(1s) o \gamma X] / {\sf F}[{\Upsilon}(1s) o X]$	0.1190(60)
Lattice PS $\bar{c}c$ correlator moments	0.1174(12)
$\sigma[e^+e^- \rightarrow hadrons]$ (2-10.6 GeV)	0.1190(110)
NNNLL ALEPH+OPAL thrust distributions	0.1172(21)

- \bullet expt'l determination errors large c.f. nominal lattice, τ
- Non- τ , non-HPQCD/UKQCD Bethke input weighted (naive) average: $\alpha_s(M_Z) = 0.1179(13)$

UPDATES OF HPQCD/UKQCD LATTICE

• Based on perturbative analyses of observables, O_k , measured on MILC (asqtad) $n_f = 2 + 1$ ensembles

•
$$O(\alpha_s^3) D = 0$$
 $(m_q = 0)$ expansion
 $[O_k]_{D=0} = D_k \alpha_T(Q_k) \left[1 + c_1^{(k)} \alpha_T(Q_k) + c_2^{(k)} \alpha_T^2(Q_k) + \cdots \right]$
with $Q_k = d_k/a$ the BLM scale for O_k

• D_k , $c_1^{(k)}$, $c_2^{(k)}$, d_k : Q. Mason et al. 3-loop lattice PT

- Original HPQCD/UKQCD analysis [PRL 95 (2005) 052002]: $a \sim 0.18$, 0.12, 0.09 fm ensembles
- HPQCD [PRD78 (2008) 114507], CSSM [PRD78 (2008) 114504] updates add new $a \sim 0.15$, 0.06 fm ensembles, one $(am_{\ell}, am_s) a \sim 0.045$ fm ensemble (HPQCD only)(results dominated by finer ensembles)
- m_q -dependent NP contributions: linear m_q extrapolation/subtraction
- m_q -independent NP: estimate/subtract via LO $\langle aG^2 \rangle$ (+ fitted D > 4 for more long-distance-sensitive observables in 2008 HPQCD)

Some relevant details

- D = 0 to $O(\alpha_s^3)$ insufficient to account for observed scale dependence \Rightarrow MUST fit additional HO term(s)
- 2008 HPQCD, CSSM: different D = 0 expansion parameter choices ⇒ different (complementary) handling of residual HO perturbative uncertainties
- $m_q \rightarrow 0$ extrapolation very reliable:
 - many (am_{ℓ}, am_s) for $a \sim 0.12$ fm, very good linearity (plus good linearity for other a as well)
 - extrapolation very stable to added non-linear terms

- Re m_q -independent NP subtraction:
 - $-\langle aG^2 \rangle = 0 \pm 0.012 \ GeV^4$ (HPQCD), with independent fit for each O_k
 - $\langle aG^2 \rangle$ = 0.009±0.007 GeV^4 (CSSM), common input for all O_k
 - estimated D = 4 correction tiny for shortest-distancesensitive observables (e.g., $log(W_{11})$, $log(W_{12})$)
 - After fitted m_q -independent NP subtractions, HPQCD observables with LARGE estimated D = 4 corrections yield α_s in good agreement with $log(W_{11})$ etc.

• COMPARISON OF HPQCD, CSSM RESULTS

- Results for a selection of three least-NP and four most-NP observables
- $\delta_{D=4} \equiv$ fractional change from scale dependence of "raw" observable to that of m_q -independent NPsubtracted version between $a \sim 0.12$ and ~ 0.06 fm $(\langle aG^2 \rangle = 0.009 \ GeV^4$ as input)
- common overall central scale $r_1 = 0.321$ fm as input
- NOTE: re estimated NP D = 4 corrections
 - * corrections far and away the largest for the 3 HPQCD "outliers"
 - * despite *large* corrections, α_s agree with results from observables where NP corrections negligible

- $\delta_{D=4}$ and resulting $\alpha_s(M_Z)$ values

O_k	$\alpha_s(M_Z)$	$\alpha_s(M_Z)$	$\delta_{D=4}$
	(HPQCD)	(CSSM)	
$\log(W_{11})$	0.1185(8)	0.1190(11)	0.7%
$\log(W_{12})$	0.1185(8)	0.1191(11)	2.0%
$\log\left(\frac{W_{12}}{u_0^6}\right)$	0.1183(7)	0.1191(11)	5.2%
$\log\left(\frac{W_{11}W_{22}}{W_{12}^2}\right)$	0.1185(9)	N/A	32%
$log\left(\frac{W_{23}}{u_0^{10}}\right)$	0.1176(9)	N/A	53%
$log\left(\frac{W_{14}}{W_{23}}\right)$	0.1171(11)	N/A	79%
$\log\left(\frac{W_{11}W_{23}}{W_{12}W_{13}}\right)$	0.1174(9)	N/A	92%

THE HADRONIC τ DETERMINATION

• Based on FESRs for $\Pi_{T;ud}^{(0+1)}$, T = V, A, V + A

$$\int_0^{s_0} w(s) \,\rho_{T;ud}^{(0+1)}(s) \, ds = -\frac{1}{2\pi i} \oint_{|s|=s_0} w(s) \,\Pi_{T;ud}^{(0+1)}(s) \, ds$$

- valid for any s_0 , analytic w(s)
- LHS: data; RHS: OPE (hence α_s) for $s_0 >> \Lambda_{QCD}^2$

• The spectral integrals

- V, A,
$$I = 1$$
 spectral function $\rho_{V/A;ud}^{(J)=(0+1)}(s)$ from
experimental differential decay distributions $\frac{dR_{V/A;ud}}{ds}$,
with $R_{V/A;ud} \equiv \frac{\Gamma[\tau \rightarrow \nu_{\tau} \text{ hadrons}_{V/A;ud}(\gamma)]}{\Gamma[\tau^{-} \rightarrow \nu_{\tau} e^{-} \overline{\nu}_{e}(\gamma)]}$

- ⇒ experimental access to generic (J) = (0 + 1); w(s)-weighted, $0 < s \le s_0 \le m_\tau^2$ spectral integrals

$$I_{spec;T}^{w}(s_{0}) = \int_{0}^{s_{0}} ds \, w(s) \rho_{T;ud}^{(0+1)}(s)$$

- The OPE side:
 - D = 0: fixed by α_s (known to 5 loops); strongly dominant for $s_0 \gtrsim 2 \text{ GeV}^2$
 - D= 2: $\propto (m_d \pm m_u)^2$, hence negligible

-
$$D$$
 = 4: fixed by $\langle aG^2 \rangle$, $\langle m_\ell \bar{\ell}\ell \rangle$, $\langle m_s \bar{s}s \rangle$

$$-D = 6, 8, \cdots$$

- not known phenomenologically, hence fitted to data (or guesstimated)
- * for ~ 1% $\alpha_s(M_Z)$ determination need integrated D > 4 to $\lesssim 0.5\%$ of D = 0

- More on fitting the D > 4 contributions

- * $w(y) = \sum_{m=0} b_m y^m$, $y = s/s_0$ to distinguish contribs with different D (differing s_0 dependence)
- * integrated $D = 2k + 2 \ge 2$ contribution $\Leftrightarrow b_k \ne 0$ (up to $O[\alpha_s^2(m_\tau^2)]) \Rightarrow$ contributions up to $D_{max} = 2N + 2$ for degree N w(y)

* integrated
$$D = 2k + 2$$
 contributions $\propto 1/s_0^k$

$$\frac{-1}{2\pi i} \oint_{|s|=s_0} ds \, w(y) \, \sum_{D>4} \frac{C_D}{Q^D} = \sum_{k\geq 2} (-1)^k \frac{b_k C_{2k+2}}{s_0^k}$$

Summary of recent τ -based determinations

- Differences in 6-loop D = 0 Adler function coeff, d_5 ; D = 0 series integral prescription; D > 4 treatment
- Duality violation typically assumed negligible

Source	d_5	D > 4 self- $ $ PT scheme $ $		$\alpha_s(M_Z^2)$
		consistency		
BCK08	275	No	$\frac{1}{2}(FO+CI)$	0.1202(19)
ALEPH08	383	No	CI	0.1211(11)
BJ08	283	No	FO	0.1185(14)
	283	No	model	0.1179(8)
MY08	275	Yes	CI	0.1187(16)
N09	0	partly	$\frac{1}{2}(FO+CI)$	0.1192(10)
M09	400	No	$\frac{1}{2}(RC+CI)$	0.1213(11)
CF09	283	No	modified CI	0.1186(13)

THE ALEPH, OPAL (AND RELATED) ANALYSES

- $w_{(00)}(y) = 1 3y^2 + 2y^3 \Rightarrow OPE$ up to D = 6,8
- $\Gamma[\tau \rightarrow hadrons_{ud}\nu_{\tau}]$ alone $(\leftrightarrow I^{w(00)}_{spec;V+A}(m_{\tau}^2))$ insufficient to fix α_s , C_6 , C_8
- ALEPH, OPAL approach
 - add $s_0 = m_{\tau}^2$, (km) = (10), (11), (12), (13) "spectral weight" FESRs $[w(y) \rightarrow y^m (1-y)^k w_{(00)}(y)]$
 - neglect (in ppl present) $D = 10, \dots, 16$ contribs

- α_s , $\langle aG^2 \rangle$, C_6 , C_8 fitted to 5 integral set

• NOTE: ALEPH C_6, C_8 is input to most other analyses

- Potential problem: single s_0 (= m_{τ}^2) \Rightarrow D > 8 (if non-negligible) distort D = 0, 4, 6, 8 fit parameters
- Test for possible symptoms (systematic s_0 -dependence problems) using "fit qualities"

 $F_T^w(s_0) \equiv \left[I_{spec;T}^w(s_0) - I_{OPE;T}^w(s_0) \right] / \delta I_{spec;T}^w(s_0)$

• FIGURE: $F_V^w(s_0)$ for ALEPH data, OPE fit, and 3 $w_{(k,m)}$ used in ALEPH/OPAL fit, PLUS 3 other degree 3 w(y) (to provide independent $C_{6,8}$ tests)

• OPE-spectral mismatch \Rightarrow either a problem with assumption that D > 8 negligible, or OPE breakdown (either way a problem for extracted α_s)

A MODIFIED ANALYSIS

- V, A and V+A, $w_N(y) \equiv 1 \frac{N}{N-1}y + \frac{1}{N-1}y^N$ FESRs [KM,T. Yavin, PRD78 (2008) 094020 (arXiv:0807.0650)]
- single unsuppressed D = 2N + 2 > 4 contrib $(N \ge 2)$, $(-1)^N C_{2N+2} / \left[(N-1) s_0^N \right]$
- $1/s_0^{N+1}$ scaling c.f. $D = 0 \Rightarrow \text{joint } \alpha_s, C_{2N+2}$ fit
- 1/(N-1) D = 2N + 2 suppression, no D = 0 suppression \Rightarrow MUCH better α_s emphasis than $w_{(k,m)}$ set

RESULTS

• Results for $\alpha_s(m_{\tau}^2)$ using the CIPT D = 0 prescription

w(y)	ALEPH V+A	OPAL V+A
w_2	0.320(5)(12)	0.322(7)(12)
w_3	0.320(5)(12)	0.322(7)(12)
w_4	0.320(5)(12)	0.322(7)(12)
w_5	0.320(5)(12)	0.322(7)(12)
w_6	0.320(5)(12)	0.322(8)(12)

w(y)	ALEPH V	ALEPH A	ALEPH V+A
w_2	0.321(7)(12)	0.319(6)(12)	0.320(5)(12)
w_3	0.321(7)(12)	0.319(6)(12)	0.320(5)(12)
w_4	0.321(7)(12)	0.319(6)(12)	0.320(5)(12)
w_5	0.321(7)(12)	0.319(6)(12)	0.320(5)(12)
w_6	0.321(7)(12)	0.319(6)(12)	0.320(5)(12)

• Much improved $F_V^w(s_0)$ for $w = w_N$ c.f. $w = w_{(k,m)}$

- CIPT w_2, \dots, w_6 fit values consistent to ± 0.0001
- Averaging ALEPH and OPAL based results with nonnormalization component of error \Rightarrow

$$\alpha_s^{(n_f=3)}(m_{\tau}) = 0.3209(46)_{exp}(118)_{th}$$

standard self-consistent combination of 4-loop running,
 3-loop matching at flavor thresholds ⇒

$$\alpha_s^{(n_f=5)}(M_Z) = 0.1187(3)_{evol}(6)_{exp}(15)_{th}$$

CONCLUSIONS/SUMMARY

• Lattice $(log(W_{11}))$ to be specific) and τ determinations now in excellent agreement

 $[\alpha_s(M_Z)]_{latt} = 0.1185(8), \ 0.1190(11)$ $[\alpha_s(M_Z)]_{\tau} = 0.1187(16)$

- Significant improvement to lattice errors difficult
- Some improvement in τ decay analysis probable

- The lattice analysis case:
 - some improvement, further self-consistency checks from additional $a \sim 0.045$ fm MILC ensembles, BUT a small enough to avoid fitting additional D = 0coefficients impractical [Figure]

$\alpha_{s}(M_{Z}^{2})$ with only known vs with fitted HO coefficients

- errors dominated by overall scale-setting and residual HO D = 0 perturbative issues hence difficult to significantly improve
- The τ decay analysis case:

Significant improvement requires better understanding of D = 0 truncation uncertainty and residual duality violation (if any)

- Theory error currently dominant (~ 2.5 times expt'l)
- D = 0 truncation dominant theory error source (for |FOPT - CIPT| ⊕ $O(a^5)$ estimate ~ 0.010 of 0.012 total) ⇒ main bottleneck for future improvements

- Beneke-Jamin-like exploration (taking into account divergent nature of D = 0 series) crucial to reducing truncation uncertainty
- interesting possibilities in this regard in recent Caprini-Fischer work, but needs to be coupled to simultaneous fitting of D > 4 OPE coefficients
- Work on further constraining models of duality violation (see, e.g., recent Cata, Goltermann, Peris papers), estimates of impact on α_s extraction known to be feasible, and in preliminary stages of investigation (KM, Goltermann et al.)

SUPPLEMENTARY τ MATERIAL

- More on consistency of V+A fit results
- More on the independence of the w_2, \cdots, w_6 FESRs
- Some observations on the Beneke-Jamin calculation

More on the consistency of the V+A fit results

V+A fit results for $\alpha_s(m_\tau)$

	CIPT	$s_0 = m_\tau^2 \text{ CIPT}$	FOPT
w(y)	full fit	$D > 4 \rightarrow 0$	full fit
w ₂	0.320	0.310	0.320
w_3	0.320	0.316	0.315
w_4	0.320	0.319	0.313
w_5	0.320	0.321	0.312
w_6	0.320	0.322	0.312

More on the independence of the w_2, \cdots, w_6 FESRs

Fitted ALEPH-based V+A $\alpha_s(m_{\tau}^2)$ from pseudo-FESRs employing one w_N for the spectral integrals (row label) and another for the OPE integrals (column heading)

	w_2	w_{3}	w_{4}	w_5	w_{6}
w_2	0.320	0.175			
w_3	0.435	0.320	0.249	0.194	0.149
w_4	0.499	0.384	0.320	0.277	0.243
w_5	0.541	0.423	0.361	0.320	0.291
w_6		0.450	0.388	0.349	0.320

Some observations on the Beneke-Jamin calculation

- As for the spectral weight analysis, control of D > 4contributions essential for precision α_s (independent of choice of FOPT or CIPT for D = 0 contributions)
- Can test BJ input assumptions for $C_{6,8}$ for consistency with output FOPT fit α_s using $F_{V+A}^w(s_0)$ for various degree $\leq 3 w(y)$ (FIGURE)
- Find problems for combination of assumed D = 6,8and FOPT fitted α_s

- Exercise to test implications of (minimal, 5-parameter) BJ model for the resummed D = 0 series
 - Features of the minimal model:
 - * good approximation to full model sum using FOPT for a range of w(y) (FIGURES)
 - * CIPT approximation inferior to FOPT most strongly so for $w_{(0,0)}$ (FIGURES)
 - $* \Rightarrow$ expect consistency of various FOPT fits, reduced consistency for CIPT fits
 - FIGURE: FOPT, CIPT vs. Borel sum for BJ model

- Test expectations with combined FOPT, CIPT $w_{\rm 2}\text{-}$ $w_{\rm 3}$ fit
 - * combined fit yields α_s , C_6 , C_8 , hence OPE integrals fixed for any degree $\leq 3 w(y)$
 - * test agreement of CIPT, FOPT OPE with corresponding spectral integrals for $w_{(0,0)}$, $y(1-y)^2$
- find good (not good) CIPT (FOPT) consistency (contrary to model expectations) (FIGURE)
- suggests alternate non-minimal modelling possible using such observations as constraints

FOPT vs CIPT w_2 - w_3 joint fit V+A fit qualities

SUPPLEMENTARY PAGES ON LATTICE ANALYSIS

- Original 2005 HPQCD/UKQCD, 2008 HPQCD:
 - $-r_1$, $\frac{r_1}{a}$, $\langle aG^2 \rangle$: independent fit w/ priors for each O_k
 - r_1 , $\frac{r_1}{a}$: small (measured) prior widths \Rightarrow possible unphysical observable-dependence effects small
 - Relation of expansion parameter, α_V , to $\alpha_s^{\overline{MS}}$ unknown beyond 4^{th} order
 - O_k with potentially sizeable m_q -independent NP subtractions included in analysis
 - (2008 update): better agreement of $\langle aG^2 \rangle$ from different O_k when D > 4 forms included, with fitted coefficients, for more NP observables [HPQCD private communications]

- 2008 CSSM re-analysis:
 - measured r_1 , $\frac{r_1}{a}$, charmonium sum-rule $\langle aG^2 \rangle$ (with errors): common, external input for all O_k
 - LO $D = 4 \langle aG^2 \rangle$ estimate of m_q -independent NP contribution/subtraction
 - Relation of expansion parameter to $\alpha_s^{\overline{MS}}$ exactly specified
 - focus on O_k where estimated D = 4 NP $\langle aG^2 \rangle$ subtraction small, hence D > 4 presumably even smaller

More on the two D = 0 expansion parameters choices

• D = 0 expansion parameter α_T , β function β^T to 4loops from $\beta^{\overline{MS}} \Rightarrow \beta_{4,5,\cdots}^T$ incompletely known

- Expand α_T in $\alpha_0 = \alpha_T(Q_k^{max}), t_k = log[(Q_k/Q_k^{max})^2]$ $\frac{O_k}{D_k} = \cdots + \alpha_0^4 \left(c_3^{(k)} + \cdots \right) + \alpha_0^5 \left(c_4^{(k)} - 2.87 c_3^{(k)} t_k + \cdots \right)$ $+ \alpha_0^6 \left(c_5^{(k)} - 0.0033 \beta_4^T t_k - 3.58 c_4^{(k)} t_k \right)$ $+ [5.13t_k^2 - 1.62t_k] c_3^{(k)} + \cdots \right) + \alpha_0^7 \left(c_6^{(k)} - 0.0010 \beta_5^T t_k + [0.0094t_k^2 - 0.0065 c_1^{(k)} t_k] \beta_4^T - 4.30 c_5^{(k)} t_k + [7.69t_k^2 - 2.03t_k] c_4^{(k)} + [-7.35t_k^3 + 6.39t_k^2 - 4.38t_k] c_3^{(k)} + \cdots \right) + \cdots$
- Incompletely known $\beta_{4,5,\cdots}^T$ distorts fit parameters

• HPQCD approach

- $\alpha_T \rightarrow \alpha_V$ defined such that $\beta_4^V = \beta_5^V = \cdots \equiv 0$

 $- \Rightarrow$ no distortion of fit parameters

- expansion for α_V in terms of $\alpha_s^{\overline{MS}}$ in principle well-defined
- (however) expansion coefficients beyond 4^{th} order depend on $\beta_{4,5,\cdots}^{\overline{MS}}$, hence not known
- impact of HO (after fitting $c_{3,4,\cdots}^{(k)}$) localized to conversion/running to $\alpha_s(M_Z)$

• CSSM approach

- α_T defined as 3-order-truncated expansion of α_V^p
- \Rightarrow conversion to $\alpha_s^{\overline{MS}}$ exact but $\beta_{4,5\cdots}^T$ depend on $\beta_{4,5\cdots}^{\overline{MS}}$, hence incompletely known
- Fit parameter distortions reducible by hand:
 - * focus on highest intrinsic scale O_k
 - * restrict t_k (subset of finest lattices)
 - * stability c.f. expanding subset as test

FULL HPQCD RESULTS

 $\alpha_{\overline{\rm MS}}(M_Z, n_f \!=\! 5)$