NEW RESULTS ON α_s FROM THE LATTICE AND HADRONIC τ DECAYS

K. Maltman, QNP09, Beijing

OUTLINE

- Context/tension between α_s from lattice, τ decay
- Recent updates of UKQCD/HPQCD lattice approach
- New results on the hadronic τ decay determination
- Future directions/issues

CONTEXT ETC.

• HPQCD/UKQCD, PRL95 (2005) 052002: perturbative analysis of UV-sensitive lattice observables [dominant input to PDG08 assessment $\alpha_s(M_Z)=0.1176(20)]$

 $\left[\alpha_s(M_Z) \right]_{latt} = 0.1170(12)$

• ALEPH, OPAL [e.g., EPJC56 (2008) 305]: "(k,m) spectral weight" hadronic τ decay determination

 $\left[\alpha_s(M_Z) \right]_{\tau} = 0.1212(11)$

• c.f. other recent determinations [Bethke+: 0908.1135]

- $\bullet\,$ expt'l determination errors large c.f. nominal lattice, τ
- Non- τ , non-HPQCD/UKQCD Bethke input weighted (naive) average: $\alpha_s(M_Z) = 0.1179(13)$

UPDATES OF HPQCD/UKQCD LATTICE

- $\bullet\,$ Based on perturbative analyses of observables, O_k , measured on MILC (asqtad) $n_f = 2 + 1$ ensembles
- \bullet $O(\alpha_s^3)$ $D=$ 0 $(m_q=0)$ expansion $[O_k]_{D=0}$ $\delta_0 \,=\, D_k \alpha_T (Q_k) \left[1 + c_1^{(k)} \alpha_T (Q_k) + c_2^{(k)} \alpha_T^2 (Q_k) + \cdots \right]$ with $Q_k=d_k/a$ the BLM scale for O_k
- \bullet $D_k,~c_1^{(k)},~c_2^{(k)},~d_k;$ Q. Mason et al. 3-loop lattice PT
- Original HPQCD/UKQCD analysis [PRL 95 (2005) 052002]: $a \sim 0.18$, 0.12, 0.09 fm ensembles
- HPQCD [PRD78 (2008) 114507], CSSM [PRD78 (2008) 114504] updates add new $a \sim 0.15$, 0.06 fm ensembles, one (am_ℓ,am_s) a \sim 0.045 fm ensemble (HPQCD only)(results dominated by finer ensembles)
- \bullet m_q -dependent NP contributions: linear m_q extrapolation/subtraction
- \bullet m_q -independent NP: estimate/subtract via LO $\langle aG^2 \rangle$ (+ fitted $D > 4$ for more long-distance-sensitive observables in 2008 HPQCD)

Some relevant details

- $D = 0$ to $O(\alpha_s^3)$ insufficient to account for observed scale dependence \Rightarrow MUST fit additional HO term(s)
- 2008 HPQCD, CSSM: different $D=0$ expansion parameter choices \Rightarrow different (complementary) handling of residual HO perturbative uncertainties
- $\bullet \hspace{1mm} m_q \rightarrow 0 \hspace{1mm}$ extrapolation very reliable:
	- $-$ many (am_ℓ,am_s) for $a\sim$ 0.12 fm, very good linearity (plus good linearity for other a as well)
	- extrapolation very stable to added non-linear terms
- \bullet Re m_q -independent NP subtraction:
	- $hbar \langle aG^2 \rangle = 0 \pm 0.012$ GeV^4 (HPQCD), with independent fit for each O_k
	- $h_0=\langle aG^2\rangle=$ 0.009 \pm 0.007 GeV^4 (CSSM), common input for all O_k
	- $-$ estimated $D=$ 4 correction tiny for shortest-distancesensitive observables (e.g., $log(W_{11}),\ log(W_{12}))$
	- $-$ After fitted m_q -independent NP subtractions, HPQCD observables with LARGE estimated $D=4$ corrections yield α_s in good agreement with $log(W_{11})$ etc.
- COMPARISON OF HPQCD, CSSM RESULTS
	- Results for a selection of three least-NP and four most-NP observables
	- $\sigma \delta_{D=4} \equiv$ fractional change from scale dependence of "raw" observable to that of m_q -independent NPsubtracted version between $a \sim 0.12$ and ~ 0.06 fm $(\langle aG^2 \rangle = 0.009 \; GeV^4 \; \text{as input})$
	- $-$ common overall central scale $r_1 = 0.321$ fm as input
	- $-$ NOTE: re estimated NP $D = 4$ corrections
		- ∗ corrections far and away the largest for the 3 HPQCD "outliers"
		- $*$ despite *large* corrections, α_s agree with results from observables where NP corrections negligible

 $\delta_{D=4}$ and resulting $\alpha_s(M_Z)$ values

O_k	$\alpha_s(M_Z)$	$\alpha_s(M_Z)$	$\delta_{D=4}$
	(HPQCD)	(CSSM)	
$log(W_{11})$	0.1185(8)	0.1190(11)	0.7%
$log(W_{12})$	0.1185(8)	0.1191(11)	2.0%
$log\left(\frac{W_{12}}{u_0^6}\right)$	0.1183(7)	0.1191(11)	5.2%
$\sqrt{\frac{W_{11}W_{22}}{W_{12}^2}}$ log	0.1185(9)	N/A	32%
$log\left(\frac{W_{23}}{n^{10}}\right)$	0.1176(9)	N/A	53%
log	0.1171(11)	N/A	79%
$W_{11}W_{23}$ log	0.1174(9)	N/A	92%

THE HADRONIC τ DETERMINATION

• Basedd on FESRs for $\mathsf{\Pi}^{(\mathsf{O}+1)}_{T;ud}$, $T = V$, $A, V + A$

 $\int_0^{s_0} w(s) \, \rho_{T;ud}^{(0+1)}(s) \, ds \, = \, - \frac{1}{2\pi i} \oint_{|s|=s_0} w(s) \, \Pi_{T;ud}^{(0+1)}(s) \, ds$

- $-$ valid for any s_{0} , analytic $w(s)$
- $-$ LHS: data; RHS: OPE (hence $\alpha_s)$ for $s_0 >> \Lambda^2_{QCD}$

• The spectral integrals

\n- – V, A,
$$
I = 1
$$
 spectral function $\rho_{V/A;ud}^{(J)=(0+1)}(s)$ from experimental differential decay distributions $\frac{dR_{V/A;ud}}{ds}$, with $R_{V/A;ud} \equiv \frac{\Gamma[\tau \rightarrow \nu_{\tau} \text{ hadrons}_{V/A;ud}(\gamma)]}{\Gamma[\tau \rightarrow \nu_{\tau} e^- \bar{\nu}_e(\gamma)]}$
\n

 $- \Rightarrow$ experimental access to generic $(J) \, = \, (0+1);$ $w(s)$ -weighted, $0 < s \leq s_0 \leq m_\tau^2$ spectral integrals

$$
I_{spec;T}^{w}(s_0) = \int_0^{s_0} ds \, w(s) \rho_{T;ud}^{(0+1)}(s)
$$

- The OPE side:
	- ${\color{black}\sigma} -{\color{black}D} \, = \, 0$: fixed by α_s (known to 5 loops); strongly dominant for $s_0 \gtrsim$ 2 GeV 2
	- $D=$ 2: $\propto (m_d \pm m_u)^2$, hence negligible

$$
-D=4
$$
: fixed by $\langle aG^2 \rangle$, $\langle m_{\ell} \overline{\ell} \ell \rangle$, $\langle m_s \overline{s} s \rangle$

$$
- D = 6,8,\cdots
$$

- ∗ not known phenomenologically, hence fitted to data (or guesstimated)
- $*$ for \sim 1% $\alpha_s(M_Z)$ determination need integrated $D >$ 4 to \lesssim 0.5% of $D = 0$

— More on fitting the $D >$ 4 contributions

- $* \; w(y) = \sum_{m=0} b_m y^m, \; y = s/s_0$ to distinguish contribs with different D (differing s_{0} dependence)
- $*$ integrated $D=2k+2\geq 2$ contribution $\Leftrightarrow b_k\neq 0$ (up to $O[\alpha_s^2(m_\tau^2)]) \Rightarrow$ contributions up to D_{max} $=$ $2N+2$ for degree $N \; w(y)$

* integrated
$$
D = 2k + 2
$$
 contributions $\propto 1/s_0^k$

$$
\frac{-1}{2\pi i} \oint_{|s|=s_0} ds \, w(y) \sum_{D>4} \frac{C_D}{Q^D} = \sum_{k \ge 2} (-1)^k \frac{b_k C_{2k+2}}{s_0^k}
$$

Summary of recent τ -based determinations

- \bullet Differences in 6-loop $D=0$ Adler function coeff, $d_{\mathsf{5}};$ $D=0$ series integral prescription; $D > 4$ treatment
- Duality violation typically assumed negligible

THE ALEPH, OPAL (AND RELATED) ANALYSES

- • $w_{(00)}(y) = 1 - 3y^2 + 2y^3 \Rightarrow \text{OPE up to } D = 6,8$
- Γ $[\tau\,\to\,hadrons_{ud}\,\nu_\tau]$ alone $(\leftrightarrow\,I^{w(00)}_{spec;V+A}(m_\tau^2))$ insufficient to fix $\alpha_s,\ C_6,\ C_8$
- ALEPH, OPAL approach
	- $-$ add $s_0 = m_\tau^2$, $(km) = (10), (11), (12), (13)$ "spectral weight" FESRs $[w(y) \rightarrow y^m(1-y)^k w_{(00)}(y)]$
	- neglect (in ppl present) $D=10,\cdots,\,16$ contribs

 $\sim \alpha_s,\; \langle aG^2\rangle,\; C_6,\; C_8$ fitted to 5 integral set

• NOTE: ALEPH C_6, C_8 is input to most other analyses

- Potential problem: single s_0 $(= m_\tau^2) \Rightarrow D > 8$ (if nonnegligible) distort $D = 0, 4, 6, 8$ fit parameters
- Test for possible symptoms (systematic s_0 -dependence problems) using "fit qualities"

 $F_T^w(s_{\mathsf{O}}) \quad \equiv \left[I^w_{spec;T}(s_{\mathsf{O}}) - I^w_{OPE;T}(s_{\mathsf{O}}) \right] / \delta I^w_{spec;T}(s_{\mathsf{O}})$

 \bullet FIGURE: $F^w_V(s_0)$ for ALEPH data, OPE fit, and 3 $w_{(k,m)}$ used in ALEPH/OPAL fit, PLUS 3 other degree 3 $w(y)$ (to provide independent $C_{6,8}$ tests)

• OPE-spectral mismatch \Rightarrow either a problem with assumption that $D > 8$ negligible, or OPE breakdown (either way a problem for extracted α_s)

A MODIFIED ANALYSIS

- • \bullet V, A and V+A, $w_N(y) \equiv 1 - \frac{N}{N-1}y + \frac{1}{N-1}y^N$ FESRs [KM,T. Yavin, PRD78 (2008) 094020 (arXiv:0807.0650)]
- \bullet single unsuppressed $D=2N+2>4$ contrib $(N\geq 2)$, $(-1)^N C_{2N+2}/|(N-1)s_0^N|$
- \bullet $1/s_0^{N+1}$ scaling c.f. $D = 0 \Rightarrow$ joint $\alpha_s,$ C_{2N+2} fit
- \bullet $1/(N-1)$ $D=2N+2$ suppression, no $D=0$ suppression \Rightarrow MUCH better α_s emphasis than $w_{(k,m)}$ set

RESULTS

• Results for $\alpha_s(m_\tau^2)$ using the CIPT $D=0$ prescription

 \bullet Much improved $F^w_V(s_0)$ for $w=w_N$ c.f. $w=w_{(k,m)}$

- \bullet CIPT w_2, \cdots, w_6 fit values consistent to ± 0.0001
- Averaging ALEPH and OPAL based results with nonnormalization component of error \Rightarrow

$$
\alpha_s^{(n_f=3)}(m_\tau) = 0.3209(46)_{exp}(118)_{th}
$$

• standard self-consistent combination of 4-loop running, 3-loop matching at flavor thresholds \Rightarrow

$$
\alpha_s^{(n_f=5)}(M_Z) = 0.1187(3)_{evol}(6)_{exp}(15)_{th}
$$

CONCLUSIONS/SUMMARY

 \bullet Lattice $(log\, (W_{11})$ to be specific) and τ determinations no w in excellent agreement

> $\left[\alpha_s(M_Z) \right]_{latt}=$ 0.1185(8), $\,$ 0.1190(11) $\left[\alpha_s(M_Z) \right]_{\tau} = 0.1187(16)$

- Significant improvement to lattice errors difficult
- Some improvement in τ decay analysis probable
- The lattice analysis case:
	- some improvement, further self-consistency checks from additional $a\sim$ 0.045 fm MILC ensembles, BUT a small enough to avoid fitting additional $D=0$ coefficients impractical [Figure]

$\alpha_s(M_Z^2)$ with only known vs with fitted HO coefficients

- errors dominated by overall scale-setting and residual HO $D=0$ perturbative issues hence difficult to significantly improve
- The τ decay analysis case:

Significant improvement requires better understanding of $D\,=\,0$ truncation uncertainty and residual duality violation (if any)

- $-$ Theory error currently dominant (\sim 2.5 times expt'l)
- $D=$ 0 truncation dominant theory error source (for $|FOPT - CIPT| \oplus O(a^5)$ estimate ~ 0.010 of 0.012 total) \Rightarrow main bottleneck for future improvements
- Beneke-Jamin-like exploration (taking into account divergent nature of $D = 0$ series) crucial to reducing truncation uncertainty
- interesting possibilities in this regard in recent Caprini-Fischer work, but needs to be coupled to simultaneous fitting of $D>$ 4 OPE coefficients
- Work on further constraining models of duality violation (see, e.g., recent Cata, Goltermann, Peris papers), estimates of impact on α_s extraction known to be feasible, and in preliminary stages of investigation (KM, Goltermann et al.)

$\mathsf{SUPPLEMENTARY}\ \tau\ \mathsf{MATERIAL}$

- \bullet More on consistency of V+A fit results
- \bullet More on the independence of the w_2, \cdots, w_6 FESRs
- Some observations on the Beneke-Jamin calculation

More on the consistency of the V+A fit results

V+A fit results for $\alpha_s(m_\tau)$

More on the independence of the w_2, \cdots, w_6 FESRs

Fitted ALEPH-based V+A $\alpha_s(m_\tau^2)$ from pseudo-FESRs employing one w_N for the spectral integrals (row label) and another for the OPE integrals (column heading)

Some observations on the Beneke-Jamin calculation

- As for the spectral weight analysis, control of $D > 4$ contributions essential for precision α_s (independent of choice of FOPT or CIPT for $D=0$ contributions)
- $\bullet\,$ Can test BJ input assumptions for $C_{\bf 6,8}$ for consistency with output FOPT fit α_s using $F^w_{V+A}(s_0)$ for various degree ≤ 3 $w(y)$ (FIGURE)
- Find problems for combination of assumed $D=6,8$ and FOPT fitted α_s

- Exercise to test implications of (minimal, 5-parameter) BJ model for the resummed $D=\mathsf{0}$ series
	- Features of the minimal model:
		- ∗ good approximation to full model sum using FOPT for a range of $w(y)$ (FIGURES)
		- ∗ CIPT approximation inferior to FOPT most strongly *so for* $w_{(0,0)}$ *(FIGURES)*
		- $* \Rightarrow$ expect consistency of various FOPT fits, reduced consistency for CIPT fits
	- FIGURE: FOPT, CIPT vs. Borel sum for BJ model

- $-$ Test expectations with combined FOPT, CIPT w_{2} $w_{\mathcal{\mathsf{3}}}$ fit
	- $*$ combined fit yields $\alpha_s,$ $C_6,$ $C_8,$ hence OPE integrals fixed for any degree ≤ 3 $w(y)$
	- ∗ test agreement of CIPT, FOPT OPE with corresponding spectral integrals for $w_{(0,0)}$, $y(1-y)^2$
- find good (not good) CIPT (FOPT) consistency (contrary to model expectations) (FIGURE)
- suggests alternate non-minimal modelling possible using such observations as constraints

FOPT vs CIPT w_2-w_3 joint fit V+A fit qualities

SUPPLEMENTARY PAGES ON LATTICE ANALYSIS

- Original 2005 HPQCD/UKQCD, 2008 HPQCD:
	- r_1 , $\frac{r_1}{a}$, $\langle aG^2\rangle$: independent fit w/ priors *for each* O_k
	- $\, r_1,$ $\frac{r_1}{a}$: small (measured) prior widths \Rightarrow possible unphysical observable-dependence effects small :
	- Relation of expansion parameter, α_V , to α_s^{MS} unknown beyond 4 th order
	- O_k with potentially sizeable m_q -independent NP subtractions included in analysis
	- $-$ (2008 update): better agreement of $\langle aG^2\rangle$ from different O_k when $D>$ 4 forms included, with fitted coefficients, for more NP observables [HPQCD private communications]
- 2008 CSSM re-analysis:
	- measured r_1 , $\frac{r_1}{a}$, charmonium sum-rule $\langle aG^2\rangle$ (with errors): common, external input for all O_k
	- $-$ LO D $=$ 4 $\langle aG^2\rangle$ estimate of m_q -independent NP contribution/subtraction
	- $-$ Relation of expansion parameter to α_s^{MS} exactly specified
	- $-$ focus on O_k where estimated $D=$ 4 NP $\langle aG^2 \rangle$ subtraction small, hence $D>4$ presumably even smaller

More on the two $D=0$ expansion parameters choices

• $D = 0$ expansion parameter α_T , β function β^T to 4loops from $\beta^{MS} \Rightarrow \beta_{4,5,\cdots}^T$ incompletely known

- \bullet Expand α_T in $\alpha_0 = \alpha_T (Q_k^{max})$, $t_k = log[(Q_k / Q_k^{max})^2]$ O_k $D_{k}% (k;\lambda)\equiv\sum_{k}\left\vert k_{1}\right\vert ^{2}$ = $= \cdots + \alpha_0^4 \left(c_3^{(k)} + \cdots \right) + \alpha_0^5 \left(c_4^{(k)} - 2.87 c_3^{(k)} t_k + \cdots \right)$ $+\alpha_{\mathsf{0}}^{\mathsf{6}}\Big(c_{\mathsf{5}}^{(k)} - 0.0033\beta_{\mathsf{4}}^{T}t_{k} - 3.58c_{\mathsf{4}}^{(k)}t_{k}$ $+[5.13t_k^2 - 1.62t_k]c_3^{(k)} + \cdots + \alpha_0^{7} (c_6^{(k)}$ $-0.0010\beta_5^Tt_k+[0.0094t_k^2-0.0065c_1^{(k)}t_k]\beta_4^T$ $-4.30c_5^{(k)}t_k + [7.69t_k^2 - 2.03t_k]c_4^{(k)}$ $+[-7.35t_k^3+6.39t_k^2-4.38t_k]c_3^{(k)}+\cdots\Bigr)+\cdots$
- •• Incompletely known $\beta_{4,5,\cdots}^{T}$ distorts fit parameters

• HPQCD approach

 $\,-\,\alpha_T \rightarrow \alpha_V$ defined such that $\beta^V_4 = \beta^V_5 = \cdots \equiv 0$

 $- \Rightarrow$ no distortion of fit parameters

- $-$ expansion for α_{V} in terms of α_{s}^{MS} in principle welldefined
- – $-$ (however) expansion coefficients beyond 4^{th} order depend on $\beta_{4.5...}^{\overline{MS}}$, hence not known
- $-$ impact of HO (after fitting $c_{3,4,...}^{(k)}$) localized to conversion/running to $\alpha_s(M_Z)$

• CSSM approach

- α_T defined as 3-order-truncated expansion of α_V^p
- \Rightarrow conversion to α_s^{MS} exact but $\beta_{4,5\cdot\cdot\cdot}^{T}$ depend on $\beta_{4.5...}^{\overline{MS}}$, hence incompletely known
- Fit parameter distortions reducible by hand:
	- \ast focus on highest intrinsic scale O_k
	- \ast restrict t_k (subset of finest lattices)
	- ∗ stability c.f. expanding subset as test

FULL HPQCD RESULTS

 $\alpha_{\overline{\rm MS}}(M_Z, n_f = 5)$