Three-Loop HTL Free Energy for QED

Nan Su

Frankfurt Institute for Advanced Studies, Goethe-Universität Frankfurt

Collaborators: Michael Strickland (Gettysburg and FIAS), Jens Andersen (NTNU)

Reference: arXiv:0906.2936

The 5-th International Conference on Quarks and Nuclear Physics Beijing, September 24, 2009

Contents

- Introduction
 - Poor convergence of naive perturbation theory at finite temperature
- Hard-Thermal-Loop Perturbation Theory
- Conclusions and Outlook

Introduction

Perturbative QCD free energy with $N_c=3$ and $N_f=2$ vs temperature. ($\pi T \leq \mu \leq 4\pi T$) 4-d lattice results from Karsch et al, 03.

(Here
$$\alpha_s = g_s^2/4\pi$$
)

- The weak-coupling expansion of the QCD free energy, \mathcal{F} , has been calculated to order $\alpha_s^3 \log \alpha_s$. ^{1,2,3,4}
- At temperatures expected at RHIC energies, $T \sim 0.3~{\rm GeV}$, the running coupling constant $\alpha_s(2\pi T)$ is approximately 1/3, or $g_s \sim 2$.
- The successive terms contributing to \mathcal{F} can strictly only form a decreasing series if $\alpha_s \lesssim 1/20$ which corresponds to $T \sim 10^5 \; \mathrm{GeV}$.

¹ Arnold and Zhai, 94/95.

² Kastening and Zhai, 95.

³ Braaten and Nieto, 96.

⁴ Kajantie, Laine, Rummukainen and Schröder, 02.

Introduction

LO and NLO HTLpt free energy of QCD with $N_c=3$ and $N_f=2$ together with the perturbative prediction accurate to g^5 .

- Hard-thermal-loop (HTL) perturbation theory ^{4,5} is a systematic, self-consistent and gauge-invariant reorganization of thermal quantum fields.
- Hard-thermal-loop perturbation theory is formulated in Minkowski space, therefore it is in principle possible to carry out real time calculations.
- Interested in $T > 2 3 T_c$.
 - ⁴ Andersen, Braaten, Strickland, 99/99/99.
 - ⁵ Andersen, Braaten, Petitgirard, Strickland, 02; Andersen, Petitgirard, Strickland, 03.

But there is still work to do!

LO and NLO HTLpt free energy of QCD with $N_c=3$ and $N_f=2$ together with the perturbative prediction accurate to g^5 .

- g⁴ and g⁵ terms can't be fully fixed at NLO. Some of them enter at NNLO. The result has the right magnitude, but the wrong sign.
- Running coupling effect doesn't enter at NLO. At this order, running coupling needs to be put by hand. Coupling constant renormalization enters at NNLO as well.

NNLO is needed!

Hard-Thermal-Loop Perturbation Theory (HTLpt)

 Hard-thermal-loop perturbation theory is a reorganization of the perturbative series for QCD

$$\mathcal{L}_{\mathrm{HTLpt}} = (\mathcal{L}_{\mathrm{QCD}} + \mathcal{L}_{\mathrm{HTL}}) \bigg|_{g \to \sqrt{\delta}g} + \Delta \mathcal{L}_{\mathrm{HTL}}$$

The HTL "improvement" term is

$$\mathcal{L}_{\text{HTL}} = -\frac{1}{2}(1 - \delta)m_D^2 \text{Tr} \left(G_{\mu\alpha} \left\langle \frac{y^{\alpha}y^{\beta}}{(y \cdot D)^2} \right\rangle_y G^{\mu}_{\beta} \right)$$

where $\langle \cdots \rangle_y$ indicates angle average

HTLpt: 1-loop free energy for pure glue

• Separation into hard and soft contributions ($d = 3 - 2\epsilon$)

$$\mathcal{F}_g = -\frac{1}{2} \mathcal{F}_P \left\{ (d-1) \log[-\Delta_T(P)] + \log \Delta_L(P) \right\}$$

 \circ Hard momenta $(\omega, \mathbf{p} \sim T)$

$$\mathcal{F}_{g}^{(h)} = \frac{d-1}{2} \cancel{\int}_{P} \log(P^{2}) + \frac{1}{2} m_{D}^{2} \cancel{\int}_{P} \frac{1}{P^{2}} - \frac{1}{4(d-1)} m_{D}^{4} \cancel{\int}_{P} \left[\frac{1}{(P^{2})^{2}} - 2 \frac{1}{p^{2}P^{2}} - 2 d \frac{1}{p^{4}} \mathcal{T}_{P} + 2 \frac{1}{p^{2}P^{2}} \mathcal{T}_{P} + d \frac{1}{p^{4}} (\mathcal{T}_{P})^{2} \right] + \mathcal{O}(m_{D}^{6})$$

 \circ Soft momenta $(\omega, \mathbf{p} \sim gT)$

$$\mathcal{F}_g^{(s)} = \frac{1}{2}T \int_{\mathbf{p}} \log(p^2 + m_D^2)$$

HTLpt: 1-loop free energy for pure glue

LO thermodynamical potential

$$\frac{\Omega_{\text{LO}}}{\mathcal{F}_{\text{ideal}}} = 1 - \frac{15}{2}\hat{m}_D^2 + 30\hat{m}_D^3
+ \frac{45}{4} \left(\log\frac{\hat{\mu}}{2} - \frac{7}{2} + \gamma + \frac{\pi^2}{3}\right)\hat{m}_D^4 + \mathcal{O}(\hat{m}_D^6),$$

where $\hat{m}_D = \frac{m_D}{2\pi T}$ and $\hat{\mu} = \frac{\mu}{2\pi T}$.

• The gap equation is not well-defined at LO (α_s does not appear above). However, we can get LO free energy by setting

$$m_D = gT$$
.

HTLpt: 1- and 2-loop free energy for pure glue

LO and NLO HTLpt free energy of pure glue vs temperature Andersen, Braaten, Petitgirard, Strickland, 02.

HTLpt: naive pert. expansion of QED free energy

Perturbative QED free energy (Kastening and Zhai, 95)

HTLpt: 3-loop diagrams for QED

3-loop QED diagrams contributing to HTLpt

HTLpt: Counterterms

The counterterms we need in the 3rd loop renormalization are

$$\Delta \mathcal{E}_{0} = \frac{1}{128\pi^{2}\epsilon} m_{D}^{4}$$

$$\Delta m_{D}^{2} = -N_{f} \frac{\alpha}{3\pi\epsilon} m_{D}^{2}$$

$$\Delta m_{f}^{2} = \frac{3\alpha}{4\pi\epsilon} m_{f}^{2}$$

$$\Delta \alpha = N_{f} \frac{\alpha^{2}}{3\pi\epsilon} \text{ (same as zero T!)}$$

HTLpt: 3-loop thermodynamic potential for QED

The NNLO thermodynamic potential reads

$$\Omega_{\text{NNLO}} = -\frac{\pi^2 T^4}{45} \left\{ 1 + \frac{7}{4} N_f - \frac{15}{4} \hat{m}_D^3 + N_f \frac{\alpha}{\pi} \left[-\frac{25}{8} + \frac{15}{2} \hat{m}_D + 15 \left(\log \frac{\hat{\mu}}{2} - \frac{1}{2} + \gamma + 2 \log 2 \right) \hat{m}_D^3 - 90 \hat{m}_D \hat{m}_f^2 \right] + N_f \left(\frac{\alpha}{\pi} \right)^2 \left[\frac{15}{64} (35 - 32 \log 2) - \frac{45}{2} \hat{m}_D \right] + N_f^2 \left(\frac{\alpha}{\pi} \right)^2 \left[\frac{25}{12} \left(\log \frac{\hat{\mu}}{2} + \frac{1}{20} + \frac{3}{5} \gamma - \frac{66}{25} \log 2 + \frac{4}{5} \frac{\zeta'(-1)}{\zeta(-1)} - \frac{2}{5} \frac{\zeta'(-3)}{\zeta(-3)} \right) + \frac{5}{4} \frac{1}{\hat{m}_D} - 15 \left(\log \frac{\hat{\mu}}{2} - \frac{1}{2} + \gamma + 2 \log 2 \right) \hat{m}_D + 30 \frac{\hat{m}_f^2}{\hat{m}_D} \right] \right\}$$

PURELY ANALYTIC!

• To eliminate the m_D and m_f dependence, the gap equations are imposed

$$\frac{\partial}{\partial m_D} \Omega(T, \alpha, m_D, m_f, \delta = 1) = 0$$

$$\frac{\partial}{\partial m_f} \Omega(T, \alpha, m_D, m_f, \delta = 1) = 0$$

HTLpt: 2- and 3-loop free energy for QED

NLO and NNLO HTLpt predictions for QED free energy

HTLpt: comparison of different schemes

Comparison of three different predictions for QED free energy at $\mu=2\pi T$

3-loop Φ -derivable result is taken from Andersen and Strickland, 05

Conclusions and Outlook

- The problem of bad convergence of weak-coupling expansion at finite temperature is generic.
- It does not just happen in gauge theories, but also in scalar theories, and even in quantum mechanics.
- Hard-thermal-loop perturbation theory, which is formulated in Minkowski space, can improve the convergence of perturbative calculations in a gauge-invariant manner.
- By pushing forward, hopefully, hard-thermal-loop perturbation theory can provide a generic way towards a convergent gauge theory at high temperature, $T > 2 3 T_c$.
- Once the NNLO QCD thermodynamics is obtained, we can begin to calculate dynamic quatities.

Large-N Limit

QED free energy in the large N_f limit. The exact result is taken from lpp, Moore and Rebhan 03.

Screened Perturbation Theory

4-loop SPT pressure vs weak-couping pressure

Andersen, Braaten and Strickland, 00. Andersen and Strickland, 01.

Andersen and Kyllingstad, 08.

HTLpt: 3-loop free energy for QED

NLO and NNLO HTLpt thermodynamic potentials with perturbative thermal masses

HTLpt: 3-loop free energy for QED

The imaginary part of NNLO HTLpt predictions for QED free energy

Weinberg and Wu, 87