Low energy scattering and $Z^+(4430)$

Chuan Liu

School of Physics, Peking University, Beijing, China
China Lattice QCD Collaboration (CLQCD)

- Peking Univ.: G.-Z. Meng, M. Gong, S. He, C. Liu, Z.-Y. Niu, Y. Shen
- ITP/CAS: J.P. Ma
- IHEP: Y. Chen, G. Li, Y.-J. Zhang
- Nankai Univ.: Y.-B. Liu, X.-F Meng
- Zhejiang Univ.: J.-B. Zhang

Details of this work: PRD 80, 034503, (2009)
Outline

- Motivation
- Theoretical framework
- One- and two-particle correlation matrix
- Simulation results
 - Parameters
 - Dispersion relations
 - Scattering phase & scattering length
 - Possible bound state?
- Conclusions
Motivations

✓ A peak observed in $\pi\psi'$ invariant mass spectrum in B decays to $K\pi\psi'$
✓ Quantum numbers:
 ✓ $Q=+1, J^P=0^+, 1^-, 2^-$
✓ Breit-Wigner fit results in:
 ✓ $M=4433$ MeV
 ✓ $\Gamma=45$ MeV
✓ Mass close to the threshold of D^* and D_1

S.K. Choi et al., PRL 100, 142001 (2008)

FIG. 2 (color online). The $M(\pi^+\psi')$ distribution for events in the $M_{bc} - \Delta E$ signal region and with the K^* veto applied. The shaded histogram show the scaled results from the ΔE sideband. The solid curves show the results of the fit described in the text.
Motivations

- Close to D^*D_1 threshold
 - Shallow bound state of two D mesons (S.L. Zhu et al, PRD77, 034003)
 - Tetraquark resonance above threshold (X.-H Liu et al, PRD77, 094005)
 - Threshold enhancement (J.L. Rosner, PRD76, 114002)
- To clarify the issue, scattering info near the threshold of D^*D_1 is needed!
 - Scattering length a_0
 - Effective range r_0
- We use quenched lattice QCD to study the problem
Theoretical framework

- In lattice QCD, one could infer hadron-hadron scattering information by measuring the energy eigenvalues of the two (interacting!) hadrons in a finite box.

- **Luescher’s formula** relates the two-particle energy eigenvalues in a box to the scattering phase shifts in the continuum.
Theoretical framework

- A box of size L, periodic in all three spatial directions:
 \[\vec{k} = \left(\frac{2\pi}{L} \right) \vec{n}, \quad \vec{n} \in \mathbb{Z}^3 \]

- Two interacting hadrons

\[
E_{1\cdot2}(\vec{k}) = \sqrt{m_1^2 + \vec{k}^2} + \sqrt{m_2^2 + \vec{k}^2}, \quad q^2 = \frac{\vec{k}^2 L^2}{(2\pi)^2}
\]

\[
\tan \delta(q) = \frac{\pi^{3/2} q}{Z_{00}(1; q^2)}
\]
Theoretical framework

- We use asymmetric volumes: \(L \times (\eta_2 L) \times (\eta_3 L) \)
- We take \(\eta_2 = 1, \eta_3 > 1 \)
- The symmetry for the box is \(D_4 \)

\[
\tan \delta(q) = \frac{\pi^{3/2} q \eta_2 \eta_3}{Z_{00}(1; q^2; \eta_2, \eta_3)}
\]
Correlation matrices

- Single particle operators

\[Q_i(x) = [\bar{d} \gamma^i c](x), \quad P_i(x) = [\bar{c} \gamma^i \gamma^5 u](x), \]

- Angular momentum decomposition

\[0 = A_1, \quad 1 = E \oplus A_2, \quad 2 = A_1 \oplus B_1 \oplus B_2 \oplus E. \]
Correlation matrices

- Two particle operators

<table>
<thead>
<tr>
<th>J^P</th>
<th>Two-particle operators</th>
</tr>
</thead>
<tbody>
<tr>
<td>0^-</td>
<td>$O^{(A_1)(1)}(t)$</td>
</tr>
<tr>
<td>1^-</td>
<td>$O^{(A_2)}(t)$, $O^{(E)(1)}_1(t)$, $O^{(E)(1)}_2(t)$</td>
</tr>
<tr>
<td>2^-</td>
<td>$O^{(A_1)(2)}(t)$, $O^{(B_1)}(t)$, $O^{(B_2)}(t)$, $O^{(E)(2)}_1(t)$, $O^{(E)(2)}_2(t)$</td>
</tr>
</tbody>
</table>

$O^{(A_1)(1)}(t) = \sum_{R \in G} \left[Q_1(t + 1, -R \circ k) P_1(t, R \circ k) + Q_2(t + 1, -R \circ k) P_2(t, R \circ k) + Q_3(t + 1, -R \circ k) P_3(t, R \circ k) \right]$,
Correlation matrices

- Only the correlation matrix in A_I channel shows signal

$$C_{mn}^{(A_1)(1)}(t) = \langle O_m^{(A_1)(1)^\dagger}(t) O_n^{(A_1)(1)}(0) \rangle,$$

- We have computed 5 lowest non-zero momentum modes together with the zero momentum mode.
Simulation results

- Tadpole improved clover action on anisotropic lattices

| TABLE II. Simulation parameters in this study. All lattices have the same aspect ratio $\xi = 5.$ |
|-----------------|-----------------|-----------------|
| | $\beta = 2.5$ | $\beta = 2.8$ | $\beta = 3.2$ |
| N_{conf} | 700 | 500 | 200 |
| u_s^4 | 0.4236 | 0.4630 | 0.50679 |
| ν_c | 0.732 | 0.79 | 0.89 |
| ν_{ud} | 0.9305 | 0.96 | 1.0 |
| $a_s (fm)$ | 0.2037 | 0.1432 | 0.0946 |
| Lattice | $8 \times 8 \times 12 \times 40$ | $12 \times 12 \times 20 \times 64$ | $16 \times 16 \times 24 \times 80$ |
| κ^c_{max} | 0.0577 | 0.0598 | 0.0595 |
| κ^{ud}_{max} | 0.0613 | 0.0611 | 0.0606 |
Simulation results

- D^* and D_1
 - mass:
 - fixing charm quark mass parameter

FIG. 1 (color online). Heavy quark mass interpolation for m_{D^*} and m_{D_1}, from top to bottom: $\beta = 2.5$, 2.8, and 3.2.
Simulation results

- \(D^* \) and \(D_1 \) mass:
 - Chiral extrapolation.
Simulation results

- D^* and D_1 mass:
 - Continuum extrap.:
Simulation results

Single particle dispersion

FIG. 5. Dispersion relations for various mesons obtained from single meson energies. From top to bottom: D^*, D_1, η_c, J/ψ; from left to right: $\beta = 2.5, 2.8, 3.2$.
Simulation results

Two-particle energy
Simulation results

- Scattering length a_0
- & effective range r_0

$$\frac{k}{\tan \delta(k)} = \frac{1}{a_0} + \frac{1}{2} r_0 k^2 + \cdots,$$

FIG. 7. The quantity $k/\tan \delta(k)$ versus q^2 in the $A_1^{(1)}$ channel. From top to bottom: $\beta = 2.5, 2.8,$ and 3.2.
Simulation results

- After all the extrapolations

\[a_0 = 2.53 \pm 0.47 \text{ fm}, \quad r_0 = 0.70 \pm 0.10 \text{ fm.} \]
Simulation results

- Possible bound state?
 - Bound state: $q^2 \to -\infty, \cot \sigma(q^2) \to (-1)$

TABLE III. Results for the lowest q^2 and the corresponding values for $\cot \sigma(q)$ as given by Eq. (8) for different values of β in the simulation. Corresponding errors for the quantities are also given in the parenthesis.

<table>
<thead>
<tr>
<th>β</th>
<th>q^2</th>
<th>$\cot \sigma(q^2)$</th>
</tr>
</thead>
<tbody>
<tr>
<td>2.5</td>
<td>$-0.026(0.003)$</td>
<td>5.23(0.65)</td>
</tr>
<tr>
<td>2.8</td>
<td>$-0.064(0.005)$</td>
<td>0.16(0.18)</td>
</tr>
<tr>
<td>3.2</td>
<td>$-0.053(0.016)$</td>
<td>0.92(0.93)</td>
</tr>
</tbody>
</table>
Simulation results

- Possible bound state?
 - For shallow bound state, \(a_0 \rightarrow -\infty \)
 - But our scattering lengths are all positive
 - On the verge of developing a bound state
 - Using the square well potential model to estimate, the potential well is \(V_0=70(10) \text{ MeV}, R=0.7 \text{fm} \).

- Our results is not in favor of a shallow resonance
Conclusions

- Low energy $D^{*+}D_{1}^{0}$ scattering is studied in the channel of $J^{P} = 0^{-}$ using quenched lattice QCD on anisotropic lattices.
- Scattering length and effective range obtained.
- The interaction between the two D mesons is attractive in nature.
- But it is unlikely that they can form a shallow bound state below the threshold.
- More studies are welcome.