Transport properties of light meson gases and chiral symmetry restoration

DANIEL FERNANDEZ-FRAILE

danfer@th.physik.uni-frankfurt.de

Institut für Theoretische Physik Johann Wolfgang Goethe-Universität, Frankfurt am Main

"5-th International Conference on Quarks and Nuclear Physics". Beijing , September 21 - 26, 2009.

Outline

- Quick review of the diagramatic method for calculating transport coefficients in quantum field theory
- A diagramatic calculation of the shear and bulk viscosities for a meson gas in ChPT.
- The role of resonances and chiral symmetry restoration in TC, KSS bound, trace anomaly, sum rules, comparison with other results for the hadron gas, ...

Diagramatic method for calculating transport coefficients

In presence of viscosities, the energy-momentum tensor of the fluid is modified. To first order in gradients,

In Linear Response Theory (LRT):

$$\eta = \frac{1}{20} \lim_{q^0 \to 0^+} \lim_{|\boldsymbol{q}| \to 0^+} \frac{\partial \rho_{\eta}(q^0, \boldsymbol{q})}{\partial q^0} , \quad \zeta = \frac{1}{2} \lim_{q^0 \to 0^+} \lim_{|\boldsymbol{q}| \to 0^+} \frac{\partial \rho_{\zeta}(q^0, \boldsymbol{q})}{\partial q^0} ,$$

with

$$\rho_{\eta}(q^{0},\boldsymbol{q}) = 2\operatorname{Im} \operatorname{i} \int \mathrm{d}^{4}x \, \operatorname{e}^{\operatorname{i}\boldsymbol{q}\cdot\boldsymbol{x}} \theta(t) \langle [\hat{\pi}_{ij}(\boldsymbol{x}), \hat{\pi}^{ij}(0)] \rangle \,, \quad \rho_{\zeta}(q^{0},\boldsymbol{q}) = 2\operatorname{Im} \operatorname{i} \int \mathrm{d}^{4}x \, \operatorname{e}^{\operatorname{i}\boldsymbol{q}\cdot\boldsymbol{x}} \theta(t) \langle [\hat{\pi}_{ij}(\boldsymbol{x}), \hat{\pi}^{ij}(0)] \rangle \,,$$

 $\pi_{ij} \equiv T_{ij} - g_{ij}T_l^l/3 , \quad \mathcal{P} \equiv -T_l^l/3 - v_s^2 T_{00} - \mu N^0 . \qquad \text{some conserved charge}$ where

3

fluid velocity

thermodynamic force

 $\int \mathrm{d}^4 x \, \mathrm{e}^{\mathrm{i}q \cdot x} \theta(t) \langle [\hat{\mathcal{P}}(x), \hat{\mathcal{P}}(0)] \rangle \; .$

Diagramatic method for calculating transport coefficients

Consider for instance $\lambda \phi^4$: to one-loop order,

Therefore, in $\lambda \phi^4$ a resummation is necessary:

(ladder diagram)

Jeon, PRD 52, 3591 (1995)

4

particle width

We're interested in the (non-perturbative) low-energy regime of QCD, i.e. $E \leq 1 \text{ GeV}$ and $T \leq 200 \text{ MeV}$. There, chiral symmetry is spontaneously broken:

$$\chi \equiv \mathrm{SU}(3)_{\mathrm{L}} \times \mathrm{SU}(3)_{\mathrm{R}} \equiv \mathrm{SU}(3)_{\mathrm{V}} \times \mathrm{SU}(3)_{\mathrm{A}}$$

In that regime, the degrees of freedom are the corresponding Goldstone bosons: pions, kaons and etas.

Chiral symmetry acts non-linearly on the Goldstone bosons: $U(x) \stackrel{\chi}{\mapsto} RU(x)L^{\dagger}$

with
$$U(x) \equiv \exp\left(i\frac{\phi(x)}{F_0}\right)$$
, and $\phi(x) = \sum_{a=1}^{8} \lambda_a \phi_a(x)_{\text{Goldston}}$

$$\Rightarrow \quad [Q_a^{\mathrm{V}}, \phi_b] = \mathrm{i} f_{abc} \phi_c \ , \quad [Q_a^{\mathrm{A}}, \phi_b] = g_{ab}(\phi)$$

ChPT lagrangian: The most general expansion in terms of derivatives of the field U(x) and masses that fulfills all the symmetries of QCD:

$$\mathcal{L}_{ChPT} = \mathcal{L}_2 + \mathcal{L}_4 + \mathcal{L}_6 + \dots$$
 (infinite # of te

$\rightarrow \mathrm{SU}(3)_{\mathrm{V}}$.

le bosons

erms

Leading order:

$$\mathcal{L}_{2} = \frac{F_{0}^{2}}{4} \operatorname{Tr}\{(\nabla_{\mu}U)(\nabla^{\mu}U)^{\dagger}\} + \frac{F_{0}^{2}}{4} \operatorname{Tr}\{\chi U^{\dagger} + \frac{F_{0}^{2}}{4} - \frac{F_{0}^{2}$$

Next-to-leading order:

$$\begin{aligned} \mathcal{L}_{4} &= L_{1} \left(\mathrm{Tr}\{(\nabla_{\mu}U)(\nabla^{\mu}U)^{\dagger}\} \right)^{2} + L_{2} \operatorname{Tr}\{(\nabla_{\mu}U)(\nabla_{\nu}U)^{\dagger}\} \operatorname{Tr}\{(\nabla_{\mu}U)(\nabla^{\mu}U)^{\dagger}(\nabla_{\nu}U)(\nabla^{\nu}U)^{\dagger}\} + L_{4} \operatorname{Tr}\{(\nabla_{\mu}U)(\nabla^{\mu}U)^{\dagger}(\nabla^{\mu}U)^{\dagger}(\nabla^{\nu}U)^{\dagger}\} + L_{6} \left(\operatorname{Tr}\{\chi U^{\dagger} + U\chi^{\dagger}\} \right)^{2} \\ &+ L_{7} \left(\operatorname{Tr}\{\chi U^{\dagger} - U\chi^{\dagger}\} \right)^{2} + L_{8} \operatorname{Tr}\{U\chi^{\dagger}U\chi^{\dagger} + \chi U^{\dagger}\chi U^{\dagger}\} \\ &- \mathrm{i}L_{9} \operatorname{Tr}\{f_{\mu\nu}^{\mathrm{R}}(\nabla^{\mu}U)(\nabla^{\nu}U)^{\dagger} + f_{\mu\nu}^{\mathrm{L}}(\nabla^{\mu}U)^{\dagger}(\nabla^{\nu}U)\} + L_{10} \\ &+ H_{1} \operatorname{Tr}\{f_{\mu\nu}^{\mathrm{R}}f_{\mathrm{R}}^{\mu\nu} + f_{\mu\nu}^{\mathrm{L}}f_{\mathrm{L}}^{\mu\nu}\} + H_{2} \operatorname{Tr}\{\chi\chi^{\dagger}\} . \end{aligned}$$

The constants $F_0, B_0, L_1, L_2, L_3, L_4, L_5, L_6, L_7, L_8, L_9, L_{10}, H_1, H_2$ are energyand temperture-independent, and are determined experimentally.

 $+ U\chi^{\dagger}\}$.

$(\nabla^{\mu}U)(\nabla^{\nu}U)^{\dagger}\}$ $(\nabla^{\mu}U)^{\dagger}$ $\{\chi U^{\dagger} + U\chi^{\dagger}\}$ $U\chi^{\dagger}\})^2$

$\operatorname{Tr}\{Uf_{\mu\nu}^{\mathrm{L}}U^{\dagger}f_{\mathrm{R}}^{\mu\nu}\}$

Dimension, D, of a Feynman diagram:

Weinberg's theorem:

Perturbation theory with respect to the scales: $\Lambda_{\chi} \sim 1 \text{ GeV}$ (for momenta), $\Lambda_T \sim$ 200 MeV (for temperatures).

Diagramatic analysis in ChPT

Gomez Nicola & DFF, PRD 73, 045025 (2006).

If $T \gtrsim M_{\pi}$, $X \sim 1$, derivative vertices start to dominate \Rightarrow a large number of diagrams become important.

Weinberg's theorem does not provide the (non-perturbative) right order for TC at low T: $\mathcal{O}(p^{2n}) \gg \mathcal{O}(p^{4n})$.

In principle, for low T, the leading order is a one-loop diagram.

Thermal width in ChPT

Pion thermal width:

Dilute gas approximation:

$$\Gamma(k_1) = \frac{1}{2} \int \frac{\mathrm{d}^3 \boldsymbol{k}_2}{(2\pi)^3} \,\mathrm{e}^{-\beta E_2} \sigma_{\pi\pi} v_{\mathrm{rel}} (1 - \boldsymbol{v}_1 \cdot \boldsymbol{v}_1)$$

Scattering cross section:

$$\sigma_{\pi\pi}(s) \simeq \frac{32\pi}{3s} \left[|t_{00}(s)|^2 + 9|t_{11}(s)|^2 + 5|t_{20}(s)|^2 \right]$$

here we can introduce the effect of resonances and medium evolution thereof

ChPT violates the unitarity condition for high $p: S^{\dagger}S = 1 \Rightarrow Im t_{IJ}(s) = \sigma(s)|t_{IJ}(s)|^2$, with $\sigma(s) \equiv \sqrt{1 - 4M_\pi^2/s}$.

Because partial waves are essentially polynomials in p: $t_{IJ}(s) = t_{IJ}^{(1)}(s) + t_{IJ}^{(2)}(s) + \mathcal{O}(s^3)$.

The Inverse Amplitude Method (IAM):

Gomez Nicola & Pelaez, PRD 65, 054009 (2002).

$$t_{IJ}(s) \simeq \frac{t_{IJ}^{(1)}(s)}{1 - t_{IJ}^{(2)}(s;T)/t_{IJ}^{(1)}(s)}$$
.

verifies the unitarity It condition exactly and reproduces resonant states.

 $v_2)$

 $|s|^2$.

Behavior of the σ **and** ρ **resonances in medium**

65

70

350

400

 F_{π}

300

M (MeV)

-100

-150

-200

-250

150

virtual states

200

250

 $\boldsymbol{\sigma}$

$$\langle q \rangle(0) \quad \left(M_{\pi}^2 F_{\pi}^2 \right)$$

 $\simeq \left(1 - 0.35 \frac{\rho}{\rho_0} \right) + \mathcal{O}(M_{\pi}) ,$

where $\sigma_{\pi N} \simeq 45$ MeV, and $\rho_0 \simeq 0.17$ fm⁻³.

Shear viscosity of a pion gas

The value of η/s near the phase transition

By KT: $\eta \sim mvnl \sim \epsilon \tau$, and $s \sim n$. $\Rightarrow \frac{\eta}{e} \sim E \tau \gtrsim 1$ (uncertainty principle) $\tau \sim \frac{1}{\Gamma} \Rightarrow \frac{\eta}{s}$ increases at high T $\begin{array}{ll} \mbox{Large } N_{\rm c} \colon & \zeta/s = \left\{ \begin{array}{ll} \mathcal{O}(N_{\rm c}^2) \ , & T \ll M_{\pi} \\ \\ \mathcal{O}(1) \ , & T \to \infty \end{array} \right. \begin{array}{l} \mbox{Arnold, Moore, \& Yaffe,} \\ \\ \mbox{JHEP 0011, 001 (2000)} \end{array} \end{array}$

Full hadron resonance gas:

Noronha-Hostler, Noronha, & Greiner, arXiv: 0811.1571

Dobado & Llanes-Estrada, EPJ C49, 1011 (2007)

Trace anomaly, sum rules, and bulk viscosity

13

Trace anomaly, sum rules, and bulk viscosity

There is a recent modification of the sum rule (corresponding to exchanging the external frequency and momentum limits): Romatschke & Son, arXiv:0903.3946

$$3(\epsilon + P)(1 - 3c_{\rm s}^2) - 4(\epsilon - 3P) = \frac{2}{\pi} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\rm s}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\mathrm{s}}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\mathrm{s}}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\mathrm{s}}(\omega) - \beta_{\mathrm{s}}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\mathrm{s}}(\omega) - \beta_{\mathrm{s}}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\mathrm{s}}(\omega) - \beta_{\mathrm{s}}(\omega) - \beta_{\mathrm{s}}(\omega) - \beta_{\mathrm{s}}(\omega)] d\omega = \frac{1}{2} \int \frac{\mathrm{d}\omega}{\omega} [\rho_{\zeta}(\omega) - \beta_{\mathrm{s}}(\omega) -$$

An ansatz for $\rho_{\zeta}(\omega) - \rho_{\zeta}^{T=0}(\omega)$ near $\omega = 0$ might miss important information from the high- ω region: Caron-Huot, PRD 79, 125009 (2009)

Even in $\lambda \phi^4$, the correlation between ζ and T^{μ}_{μ} is not direct:

$$T \ll m: \quad \left\{ \begin{array}{l} T^{\mu}_{\mu} \sim T^{3/2} m^{5/2} \mathrm{e}^{-m/T} \\ \zeta \sim \mathrm{e}^{2m/T} m^6 / \lambda^4 T^3 \end{array} \right., \quad m \equiv 0: \quad \left\{ \begin{array}{l} T^{\mu}_{\mu} \sim \beta(\lambda) T^{\mu}_{\mu} \\ \zeta \sim \lambda T^3 \log t^2 \end{array} \right\}$$

 $ho_{\zeta}^{T=0}(\omega)]$.

 T^4

Jeon & Yaffe, PRD 53, 5799 (1996)

Trace anomaly of a gas of pions

The role of in-medium resonances

Bulk viscosity of a gas of pions

Heat capacity and speed of sound (ChPT):

Bulk viscosity (including only $2 \rightarrow 2$ processes):

Gomez Nicola & DFF, PRL 102, 121601(2009)

Cheng et al., 08

Lattice (2+1 flavors):

SB HRG: $\epsilon^{1/4} [(\text{GeV/fm}^3)^{1/4}]$ 1 2 3

Bulk viscosity of a gas of pions

The ζ/s quotient near $T_{\rm c}$ and the speed of sound: By KT: ζ

resonance gas near $T_{\rm c}$:

 ζ/s for the massless pion gas in KT: Chen & Wang, PRC 79, 044913 (2009)

$$\sim mvnl\left(\frac{1}{3} - v_{\rm s}^2\right)^2$$

According to this, for the full hadron

$$-c_{\rm s}^2
ight)^2 \simeq 0.3 \gtrsim \frac{\eta}{s} (T_{\rm c})$$

approximately independent of the number of degrees of freedom

$$(+g_1) + \frac{g_2 g_{\mu\nu}}{\beta^2} + \frac{g_3 U_{\mu} U_{\nu}}{\beta^2}$$

$$)\gtrsim 3$$
 ?

Conclusions

- The ChPT diagramatic method presented allows to easily obtain the functional form of transport coefficients at low T, including the in-medium evolution of resonances.
- The method can be extended to include other degrees of freedom: kaons, etas, baryons, and the corresponding resonances.
- Resonances make the quotient η/s for a pion gas fulfill the KSS bound and reach a minimum near $T_{\rm c}$.
- There are several indications that there is a maximum of the bulk viscosity near T_c driven by the maximum of the trace anomaly.
- Some estimations suggest that ζ/s might be larger that η/s near T_c .
- Several effects contribute to a large bulk viscosity: small speed of sound, vertex corrections, and resonances.

Backup slides

The kinetic theory approach to calculate transport coefficients (21)

Consider a small deviation from equilibrium: $f(x, p) = f_{ea}(x, p) + \delta f_{out}(x, p)$ $\delta f_{\text{out}}(x,p) \equiv f_{\text{eq}}(x,p) [1 + f_{\text{eq}}(x,p)] \phi(x,p)$

By linearizing the transport equation with respect to ϕ :

$$p^{\mu}\partial_{\mu}f_{\rm eq}\big|_{\rm lin} = \beta p^{0}[q_{\zeta}(|\boldsymbol{p}|)\boldsymbol{\nabla}\cdot\boldsymbol{U} + q_{\eta}(|\boldsymbol{p}|)\hat{p}_{i}\hat{p}_{j}\partial_{\overline{i}}\underline{U_{j}}]f_{\rm eq}(1+f_{\rm eq}) ,$$

$$\begin{split} C[f_1]_{\rm lin} &= \frac{1}{2(2\pi)^3} f_{1,\rm eq} \int \frac{\mathrm{d}^3 p_2}{p_2^0} \frac{\mathrm{d}^3 p_1'}{p_1'^0} \frac{\mathrm{d}^3 p_2'}{p_2'^0} f_{2,\rm eq} (1 + f_{1,\rm eq}') (1 + f_{2,\rm eq}') [\phi_1' + \delta_{1}' (p_1 + p_2 - p_1' - p_2') |\langle p_2', p_1' | \hat{T} | p_1, p_2 \rangle|^2 \\ & \times \delta^{(4)} (p_1 + p_2 - p_1' - p_2') |\langle p_2', p_1' | \hat{T} | p_1, p_2 \rangle|^2 \end{split}$$
with $\partial_i \overline{\hat{U}_j} \equiv \partial_i U_j + \partial_j U_i + \frac{2}{3} \delta_{ij} \nabla \cdot \boldsymbol{U}$.

Then ϕ must be of the form: $\phi = A(|\mathbf{p}|)\nabla \cdot \mathbf{U} + B(|\mathbf{p}|)\hat{p}_i\hat{p}_j\partial_i\overline{U_j}$

thermodynamic force associated to the **bulk** viscosity

$$\delta T^{\mu\nu}(x) \equiv \int \frac{\mathrm{d}^3 \boldsymbol{p}}{p^0} \ p^{\mu} p^{\nu} f_{\mathrm{eq}}(x,p) [1 + f_{\mathrm{eq}}(x,p)] \boldsymbol{\phi}(x,p) \quad \blacksquare \searrow$$

 $\checkmark f_{eq}(x,p) = \frac{1}{\rho^{\beta p_u U^{\mu}} - 1}$

 $\phi_1' + \phi_2' - \phi_1 - \phi_2$

 $\equiv f_{1.eq} \mathcal{C}[\phi]$

thermodynamic force associated to the shear viscosity

expressions for the shear and bulk viscosities

The kinetic theory approach to calculate transport coefficients (22)

Then we can write the transport equation for each type of deviation from equilibrium symbolically as: Arnold, Moore & Jaffe, JHEP 11, 001 (2000) Arnold, Dogan & Moore, PRD 74, 085021 (2006)

where
$$S_{\eta}^{ij} \equiv -Tq_{\eta}(|\mathbf{p}|)\hat{p}^{\frac{\circ}{i}\hat{p}^{j}}f_{eq}(1+f_{eq})$$
, $\chi_{\eta}^{ij} \equiv \hat{p}^{\frac{\circ}{i}\hat{p}^{j}}B(|\mathbf{p}|)$
 $S_{\zeta} \equiv -Tq_{\zeta}(|\mathbf{p}|)f_{eq}(1+f_{eq})$, $\chi_{\zeta} \equiv A(|\mathbf{p}|)$
 $\langle f|g \rangle \equiv \beta^{3} \int \frac{\mathrm{d}^{3}\mathbf{p}}{(2\pi)^{3}} f(p)g(p)$

Finally,
$$\eta = \frac{2}{15} \langle S_{\eta} | \hat{\mathcal{C}}^{-1} | S_{\eta} \rangle$$
, $\zeta = \langle S_{\zeta} | \hat{\mathcal{C}}^{-1}$

Bubble diagrams can be easily resummated:

because of rotational invariance $(\mathcal{V}_{ij}^{(0)} = \partial_i \phi \partial_j \phi + \frac{1}{3} \delta_{ij} \partial_k \phi \partial^k \phi).$

The resummation of ladder diagrams instead implies to solve an integral equation:

Jeon, PRD 52, 3591 (1995)

Jeon & Yaffe, PRD 53, 5799 (1996)

For ζ , bubble diagrams cannot be neglected:

Because the real part of a bubble does not contain pinching poles.

In this case, the resummation of ladder diagrams involves more complicated rungs:

Jeon, PRD 52, 3591 (1995)

Jeon & Yaffe, PRD 53, 5799 (1996)

and $\mathcal{V}^{(0)} \sim \mathcal{O}(\lambda)$

 $\int \zeta = \beta \lim_{\omega \to 0^+} \lim_{|\boldsymbol{p}| \to 0^+} \langle \mathcal{V}^{(0)} | \mathcal{F} | \mathcal{V} \rangle [1 + \mathcal{O}(\lambda)] .$

Equivalence between the diagramatic and the KT approaches (25)

Jeon, PRD 52, 3591 (1995) Jeon & Yaffe, PRD 53, 5799 (1996)

Consider for instance $\lambda \phi^4$. For $T \gg m$, apparently the KT treatment is not applicable: 1

$$l_{\rm free} \sim \frac{1}{T} \lesssim l_{\rm Compton}(T=0)$$

However, for a weakly coupled theory, at an arbitrary temperature there is an effective KT description:

$$l_{\rm free} \sim \frac{1}{\lambda^2 T} > l_{\rm Compton}(T) \sim \frac{1}{\sqrt{\lambda}T}$$

- **\bullet** Essentially, one identifies A and B in the KT description with the effective vertices of the diagramatic analysis, and the rung with the collision operator $\hat{\mathcal{C}}$.
- In the dispersion relation of the effective quanta enters the thermal mass instead of the vacuum mass.
- Scattering amplitudes are evaluated using thermal propagators.

$$\bigstar T^{\mu\nu}(x) \equiv T^{\mu\nu}_{\rm eq} - \int \frac{\mathrm{d}^3 \boldsymbol{p}}{(2\pi)^3 E_p} \left(p^{\mu} p^{\nu} - U^{\mu} U^{\nu} T^2 \frac{\partial^2 m_{\rm th}}{\partial T^2} \right) f_{\rm eq}(1)$$

 $+f_{\rm eq})\phi$.

Zero modes and particle-number changing processes

Jeon, PRD 52, 3591 (1995) Jeon & Yaffe, PRD 53, 5799 (1996) Arnold, Dogan & Moore, PRD 74, 085021 (2006)

- In order to calculate a transport coefficient, we need to invert the collision operator: $\eta, \zeta \propto \langle \mathcal{S} | \hat{\mathcal{C}}^{-1} | \mathcal{S} \rangle.$
- \hat{C} has one exact zero mode corresponding to energy conservation, $|E_0\rangle$, and an approximate one, $|N_0\rangle$, corresponding to the particle-number conserving terms in $\hat{\mathcal{C}}$. This is not important for η (because $\langle E_0, N_0 | S_\eta \rangle = 0$), but it is for ζ :
 - $|E_0\rangle$ is not problematic, we simply consider the vector space orthogonal to it (since $|E_0\rangle$ is not actually a departure from equilibrium).
 - Since \hat{C} is hermitian, let's consider an orthonormal basis of eigen-states:

it dominates in QCD at high T.

A study of the sigma resonance by the Bethe-Salpeter equation (27)

Cabrera, Gomez Nicola, & DFF, EPJC 61 879 (2009).

A study of the sigma resonance by the Bethe-Salpeter equation 28

Finite temperature results:

Finite temperature and density results:

Electrical conductivity of a pion gas

Definition:
$$j^i = \sigma E_{ext}^i$$

Kubo's formula:

$$\sigma = -\frac{1}{6} \lim_{q^0 \to 0^+} \lim_{|\boldsymbol{q}| \to 0^+} \frac{\partial \rho_{\sigma}(q^0, \boldsymbol{q})}{\partial q^0} , \quad \rho_{\sigma}(q^0, \boldsymbol{q}) = 2 \operatorname{Im} \operatorname{i} \int \mathrm{d}^4 x \, \operatorname{e}^{\operatorname{i} \boldsymbol{q}} d^4 x$$

Results:

electric current $q \cdot x \theta(t) \langle [\hat{J}_i(x), \hat{J}^i(0)] \rangle$.

According to kinetic theory: $\sigma~\sim$ $\frac{e^2 n_{\rm ch} \tau}{M_{\pi}}$, but $\tau \sim 1/\Gamma$, and $\Gamma \sim n v \sigma_{\pi\pi}$.

For $T \ll M_{\pi}$, $n \sim (M_{\pi}T)^{3/2} e^{-M_{\pi}/T}$, $v \sim \sqrt{T/M_{\pi}}$, and $\sigma_{\pi\pi}$ is a constant, \Rightarrow

Thermal conductivity of a gas of pions

enthalpy per particle

 $\equiv T^{i0} - \dot{h}N^i$

From KT: $\kappa \sim T^{-1}(\bar{e} - h)lv$.

For $T \ll M_{\pi}$, $\bar{e} \sim M_{\pi}$, $h \sim 5T/2 + M_{\pi}$,

 $T \ll M_{\pi}: \quad \kappa^{(0)} \simeq 63 \; \frac{T^{1/2} F_{\pi}^4}{M^{5/2}}$