

Search for New Physics in the B→K^(*)ℓ⁺ℓ⁻ Decays at BaBar

Liang Sun University of Bergen/IPN Lyon On Behalf of the BaBar Collaboration

Outline

- Theoretical motivation
- Experimental details
- Rate-based studies for $B \rightarrow K^{(*)}\ell^+\ell^-$
 - Total and partial branching fractions
 - CP asymmetries and lepton flavor ratios
 - Isospin asymmetries
- Angular studies for $B \rightarrow K^* \ell^+ \ell^-$
 - Kaon longitudinal polarization
 - Forward-backward asymmetry
- Summary

Motivation

- b→sℓ⁺ℓ⁻ transitions are forbidden at tree level in the SM
- Rare decays with BF $\sim \mathcal{O}(10^{-6})$
- Wilson coefficients C₇, C₉, C₁₀ represent short-distance contributions
 - $|C_7| ≈ 0.33 \text{ constraint from}$ $𝔅(B→X_sγ)$
- New physics at electro-weak scale may produce sizable changes in Wilson coefficients
 - C₇, C₉, C₁₀ can be probed through measuring rate-based and angular observables in B→K^(*) $\ell^+\ell^-$ decays

Linear combination of Z penguin and W box diagrams gives C_9 , C_{10}

Analysis Strategy

- A sample of 384×10^6 BB events (349 fb⁻¹) collected with *BABAR* detector
- Fully reconstruct **10** exclusive final states for decays $B \rightarrow K^{(*)}\ell^+\ell^-$
 - $\ell^+\ell^-: e^+e^-, \mu^+\mu^-$
 - $K^{(*)}: K^{\pm}, K_{s}(\rightarrow \pi^{+} \pi^{-}), K^{\pm} \pi^{0}, K_{s}(\rightarrow \pi^{+} \pi^{-})\pi^{\pm}, K^{+}\pi^{-}$
- Define two q²($\equiv m_{\ell\ell}^2$) bins: low and high, separated by J/ ψ resonance
- Suppress random combinatorial backgrounds using artificial neural networks with event shape variables as inputs
- Backgrounds from pions mis-identified as muons are either vetoed (for $B \rightarrow D(\rightarrow K^{(*)}\pi) \pi$ events) or estimated from dedicated data samples (for $B \rightarrow K^{(*)}\pi \pi$ events)
- Define kinematic variables for signal discrimination

$$\Delta E = E_{B}^{*2} - P_{B}^{*2}, \qquad \Delta E = E_{B}^{*} - E_{beam}^{*}$$

- Reject events with dilepton mass in the J/ ψ and $\psi(2S)$ charmonium regions
 - Charmonium events are used to calibrate signal m_{ES} PDF shapes & validate the fit model
- 1D m_{ES} fits with optimized selections on ΔE and neural network outputs

$B \rightarrow K^{(*)}$ II Branching Fractions

The BaBar results for the B→K^(*)II total branching fractions:

 $\mathcal{B}(B \to K \ell^+ \ell^-) = (3.94^{+0.73}_{-0.69} \pm 0.20) \times 10^{-7}$

$$- \mathscr{B}(B \to K^* \ell^+ \ell^-) = (1.11^{+0.19}_{-0.18} \pm 0.07) \times 10^{-6}$$

• The measured BFs agree well with the SM based Ali'02 predictions and Belle/CDF results

$B \rightarrow K^{(*)}II CP Asymmetries$

- The direct A_{CP} in $B \rightarrow K^{(*)}$ II is expected to be very small of $\mathcal{O}(10^{-3})$ in the SM
- The BaBar A_{CP} results for all q^2 :

-
$$A_{cp}(B^{\pm} \rightarrow K^{\pm} \ell^{+} \ell^{-}) = -0.18^{+0.18}_{-0.18} \pm 0.01$$

$$- A_{cp}(B \rightarrow K^* \ell^* \ell^-) = +0.01^{+0.16}_{-0.15} \pm 0.01$$

 Both are consistent with null SM expectation

6

$B \rightarrow K^{(*)}$ II Lepton Flavor Ratios

- In the SM, we expect $R_{K(*)} \approx 1$ for $q^2 > 0.1 \text{ GeV}^2/c^4$
- $R_{K(*)}$ may get 10% enhancement from SUSY Higgs with large tan β
- The BaBar $R_{K(*)}$ results: $- R_{\kappa} = 0.96^{+0.44}_{-0.34} \pm 0.05,$
 - $-R_{\kappa^*} = 1.37^{+0.53}_{-0.40} \pm 0.09$
 - Both agree with SM expectations

$B \rightarrow K^{(*)}$ ll Isospin Asymmetries

- In the SM, $A_{I}^{K(*)}$ is expected to be $\sim \mathcal{O}(10^{-2})$
- The BaBar A₁ results in the low q² show large deviation from zero:

-
$$A_I^{Low}(Kl^+l^-) = -1.41^{+0.49}_{-0.69} \pm 0.04,$$

- $A_I^{Low}(K^*l^+l^-) = -0.56^{+0.17}_{-0.15} \pm 0.03$

 The results in both high q² and all q² are consistent with SM expectation of very small observation

 $- A_I^{All} (K l^+ l^-) = -0.37^{+0.27}_{-0.34} \pm 0.04,$ $- A_I^{All} (K^* l^+ l^-) = -0.12^{+0.18}_{-0.16} \pm 0.04$

A_1 in the Low q^2 Region

- The significance of A₁ results from zero is estimated using a likelihood scan
 - The significance in Kll: **3.2**σ
 - The significance in K^{*}II: 2.7σ
 - For the combined Kll & K^{*}ll results, A_l = 0 is rejected with a significance of 3.9σ

$B \rightarrow K^* II$ Angular Distributions

- Fraction of K^{*} Longitudinal Polarization F₁(q²)
 - Obtained from distribution of angle Θ_{K} between the K and B in the K^{*} rest frame

- Lepton forward-backward asymmetry A_{FB} (q²)
 - Obtained from distribution of angle θ_{e} between the $\ell^+(\ell^-)$ and $B(\overline{B})$ in the $\ell^+\ell^-$ rest frame

•
$$\frac{1}{\Gamma} \frac{d\Gamma}{d\cos\theta_{\ell}} = \frac{3}{4} F_L (1 - \cos^2\theta_{\ell}) + \frac{3}{8} (1 - F_L) (1 + \cos^2\theta_{\ell}) + A_{FB} \cos\theta_{\ell}$$

• Both $F_1(q^2)$ and $A_{FR}(q^2)$ are well predicted in the SM. New physics may change magnitude and q²-dependence

$B \rightarrow K^* II$ Angular Fits

Liang Sun

-0.5

- Three-step fit procedure in the low and high q²:
 - Fit 1: m_{ES} fit to extract signal & combinatorial background yields
 - Fit 2: With yields fixed, cosθ_κ fit in the m_{ES} > 5.27 GeV region to extract F_L
 - Fit 3: With yields and F_L fixed, cosθ_e fit in the m_{ES} > 5.27 GeV region to extract A_{FB}

0.5_{cos(θ_l)}

-0.5

cos(0.

QNP '09 Beijing

Summary

- The BF results for combined KII and K*II modes in all q² and low q² agree with SM predictions, though statistical errors are rather large
- No significant direct CP asymmetry is observed in B→Kℓ+ℓ⁻ and B→K^{*}ℓ+ℓ⁻ decays
- Lepton flavor ratios are consistent with lepton universality
- The isospin asymmetries for all q² and in the high q² for Kll and K*ll modes are consistent with null expectation
- The isospin asymmetries in low q² differ significantly from zero (~3.9σ for Kll and K*ll combined)
 - This is unexpected in the SM
- The A_{FB} and F_L results are consistent with SM, though the A_{FB} agreement in the high q^2 is not as good as in the low q^2
 - The flipped-sign C_9C_{10} scenario is disfavored

BaBar Experiment

- The experimental data is collected with the BABAR detector at the PEPII asymmetric e⁺e⁻ collider located at SLAC
- The Runs 1-5 dataset comprises ~384M BB pairs, corresponding to an integrated luminosity of 349 fb⁻¹ collected on the Y(4S) resonance

K^(*)II Partial BF predictions

•The dilepton mass $(q^2 \equiv m_{\parallel}^2)$ distributions are predicted in the SM, along with a few new physics scenarios

•Long-distance contribution from charmonium states lead to greatly enhanced rates in the resonance regions

- Need to be vetoed in the analyses

- Provide very important control samples with well measured observables

Fit Model

- Unbinned maximum likelihood m_{ES} fits with a sum of the following PDFs:
 - True signal: Gaussian, shape fixed from J/ ψ fits, yield floated
 - Combinatorial: ARGUS, slope & yield floated, endpoint m0 fixed at 5.290 GeV/c2
 - Self-crossfeed & Feed-across: Revised Gaussian shape with smeared low side tail, shape & ratios fixed from fits to normalized signal MC samples Validated with charmonium samples
 - Charmonium leakage: Fixed signal-like shape, yield fixed from normalized MC samples
 - 9% of expected signals as the most extreme case
 - Hadronic (fake muon) events: Histogram PDFs with both normalization and shape fixed
 - Peaking bkgs (Photon conversions & Dalitz decays): Yield & shape parameters fixed from fits to normalized MC samples
 - Sum up to <1% of expected signal yields

Charmonium Validation

Liang Sun

•We test our fit methodology using J/ ψ and ψ (2s) samples reconstructed in all 10 decay channels

- All the measurements agree well with world averages

QNP '09 Beijing

K^(*)II BFs By Mode & q² bin

• 90% condence level upper limits are provided for measurements with < 4σ statistical significance

Mode	combined $q^2 (10^{-6})$	90% UL	low $q^2 (10^{-6})$	90% UL	high q^2 (10 ⁻⁶)	90% UL
$K^0\mu^+\mu^-$	$0.49^{+0.29}_{-0.25} \pm 0.03 (2.2\sigma)$	0.99	$0.01^{+0.15}_{-0.13} \pm 0.01 \ (0.0\sigma)$	0.31	$0.25^{+0.16}_{-0.14} \pm 0.02 \ (1.9\sigma)$	0.53
$K^+\mu^+\mu^-$	$0.41^{+0.16}_{-0.15} \pm 0.02 (3.0\sigma)$	0.62	$0.123^{+0.082}_{-0.071} \pm 0.007 \ (1.8\sigma)$	0.25	$0.116^{+0.079}_{-0.072} \pm 0.010 (1.7\sigma)$	0.24
$K^0 e^+ e^-$	$0.08^{+0.15}_{-0.12} \pm 0.01 \ (0.6\sigma)$	0.36	$-0.049^{+0.061}_{-0.049} \pm 0.004 \ (0.0\sigma)$	0.10	$0.177^{+0.118}_{-0.091} \pm 0.011 \ (2.3\sigma)$	0.38
$K^+e^+e^-$	$0.51^{+0.12}_{-0.11} \pm 0.02 (5.8\sigma)$	_	$0.308^{+0.070}_{-0.062} \pm 0.013 \ (6.7\sigma)$	_	$0.125^{+0.062}_{-0.055}\ \pm 0.006\ (2.5\sigma)$	0.21
$K^{*+}\mu^+\mu^-$	$1.46^{+0.79}_{-0.75} \pm 0.12 \ (2.0\sigma)$	2.55	$0.75^{+0.49}_{-0.45} \pm 0.07 \ (1.7\sigma)$	1.48	$0.78^{+0.43}_{-0.40} \pm 0.06 \ (2.1\sigma)$	1.36
$K^{*0}\mu^+\mu^-$	$1.35^{+0.40}_{-0.37} \pm 0.10 \ (4.1\sigma)$	_	$0.41^{+0.24}_{-0.21} \pm 0.04 \ (2.2\sigma)$	0.83	$0.62^{+0.21}_{-0.19} \pm 0.05 (3.8\sigma)$	0.97
$K^{*+}e^+e^-$	$1.38^{+0.47}_{-0.42} \pm 0.08 (3.7\sigma)$	1.97	$1.06^{+0.31}_{-0.28} \pm 0.07 \ (4.7\sigma)$	_	$0.19^{+0.23}_{-0.21} \pm 0.01 \ (0.9\sigma)$	0.53
$K^{*0}e^+e^-$	$0.86^{+0.26}_{-0.24}\ {\pm}0.05\ (4.2\sigma)$	_	$0.20^{+0.12}_{-0.11} \pm 0.01 \ (2.1\sigma)$	0.42	$0.35^{+0.15}_{-0.13} \pm 0.02 \ (3.0\sigma)$	0.60

From supplemental files for paper PRL 102, 091803 (2009)

Bell Angular Results

Belle results with 658 M BB pairs

Liang Sun