

"The 5-th International Conference on Quarks and Nuclear Physics," Beijing, September 21–26, 2009

# Spin Symmetry for Anti-Lambda Spectrum in atomic nucleus

Chunyan Song (宋春艳)

School of Phyics, Peking University, China (北京大学物理学院)

September 22, 2009



Collaborator: Jiangming Yao (尧江明), Jie Meng (孟杰)

## Introduction I

- Symmetries in the single particle spectra of nuclei,
  - violation of spin-symmetry Mayer:1955
  - with  $\tilde{l} = l \pm 1$ , the approximation of pseudo-spin symmetry Arima:1969, Hecht:1969
- The relativistic mean field (RMF) theory has been widely used for nuclear matter, finite nuclei and hypernuclei. Serot:1986, Reinhard:1989, Ring:1996, Meng:2006, Ma:1996, Vretenar:1998,...
- RMF been used to investigate pseudospin symmetry in nuclei spectrum.
  - The relation was first noted by Bahri *et al.*; found that the origin related to the strength of the scalar and vector potentials. Bahri:1992, Blokhin:1995
  - Ginocchio show that pseudo-orbital angular momentum is nothing but the "orbital angular momentum" of the lower component of the Dirac wave function . Ginocchio:1997 & 2005
  - Meng reveal that the quality of pseudospin symmetry. Meng:1998 & 1999

# Introduction II

- The spin symmetry in antinucleon spectrum been investigated with RMF; a well developed spin symmetry in the antinucleon spectrum has been found. Zhou:2003
- Recently, nuclear system with anti-baryons( $\bar{p}, \bar{\Lambda}$ ) gain renewed interest. Bürvenich:2002 Mishustin:2005 Friedman:2005 Larionov:2008&2009

#### the present work

• How good is the spin symmetry in the single  $\overline{\Lambda}$  spectrum?

Results and Discussions

Summary and Perspective

### Framework I

For nuclei system contains  $\overline{\Lambda}$ , the Lagrangian density,

$$\mathcal{L} = \mathcal{L}_0 + \mathcal{L}_{\bar{\Lambda}},$$
 (1)

The Lagrangian density for  $\overline{\Lambda}$ ,  $\mathcal{L}_{\overline{\Lambda}}$  can be written as,

$$\mathcal{L}_{\bar{\Lambda}} = \bar{\psi}_{\bar{\Lambda}} \left( i \gamma^{\mu} \partial_{\mu} - M_{\bar{\Lambda}} - g_{\sigma \bar{\Lambda}} \sigma - g_{\omega \bar{\Lambda}} \gamma^{\mu} \omega_{\mu} \right) \psi_{\bar{\Lambda}}. \quad (2)$$

as  $\overline{\Lambda}$  is charge neutral and isoscalar, it couples only to the  $\sigma$  and  $\omega$  mesons.

From the Euler-lagrange equation, the Dirac equation for  $\overline{\Lambda}$  hyperon can be obtained,

Dirac equation for 
$$\bar{\Lambda}$$
  
 $\{ \boldsymbol{\alpha} \cdot \mathbf{p} + V_{\bar{\Lambda}}(\mathbf{r}) + \beta [M_{\bar{\Lambda}} + S_{\bar{\Lambda}}(\mathbf{r})] \} \psi_{\bar{\Lambda}}(\mathbf{r}) = \epsilon_{\bar{\Lambda}} \psi_{\bar{\Lambda}}(\mathbf{r}), \quad (3)$ 

where  $M_{\bar{\Lambda}} = 1115.7$  MeV,  $\epsilon_{\bar{\Lambda}}$  is the single-particle energy.

Results and Discussions

### Framework II

The scalar and vector potentials,  $S_{\bar{\Lambda}}(\mathbf{r})$  and  $V_{\bar{\Lambda}}(\mathbf{r})$  can be written as,

$$S_{\bar{\Lambda}}(\mathbf{r}) = g_{\sigma\bar{\Lambda}}\sigma(\mathbf{r}), \qquad (4)$$
$$V_{\bar{\Lambda}}(\mathbf{r}) = g_{\omega\bar{\Lambda}}\omega(\mathbf{r}), \qquad (5)$$

According to the charge conjugation transformation,



Results and Discussions

### Framework III

For a spherical system, the Dirac spinor of  $\overline{\Lambda}$  has the form

$$\psi_{\bar{\Lambda}}(\mathbf{r}) = \frac{1}{r} \left( \begin{array}{c} iG_{n\kappa}(r)Y_{jm}^{I}(\theta,\phi) \\ -F_{\tilde{n}\kappa}(r)Y_{jm}^{\tilde{I}}(\theta,\phi) \end{array} \right), \quad j = I \pm \frac{1}{2},$$
(8)

The Schrödinger-like equations for the upper (dominant) component can be obtained from Eq.(3),

#### the Schrödinger-like equation

$$\left[-\frac{1}{2M_{+}}\left(\frac{d^{2}}{dr^{2}}+\frac{1}{2M_{+}}\frac{dV_{-}}{dr}\frac{d}{dr}-\frac{l(l+1)}{r^{2}}\right)-\frac{1}{4M_{+}^{2}}\frac{\kappa}{r}\frac{dV_{-}}{dr}+M_{\bar{\Lambda}}-V_{+}\right]G(r)=\epsilon_{\bar{\Lambda}}G(r).$$
(9)

where  $M_+ = M_{\bar{\Lambda}} + \epsilon_{\bar{\Lambda}} - V_-$  and  $V_{\pm}(r) = V_{\bar{\Lambda}}(r) \pm S_{\bar{\Lambda}}(r)$ .

 $\frac{1}{4M_+^2}\frac{\kappa}{r}\frac{dV_-}{dr}$  ~ the spin-orbit term, which determines the energy difference between the spin doublets.

## Potential and spectrum

Taking <sup>16</sup>O as an example, with PK1 parameters for the nucleon part, and  $g_{\sigma\bar{\Lambda}} = \frac{2}{3}g_{\sigma N}$ ;  $g_{\omega\bar{\Lambda}} = -\frac{2}{3}g_{\omega N}$ , the spectrum of  $\bar{\Lambda}$  have been calculated.



Figure: Potential and spectrum of  $\overline{\Lambda}$  in <sup>16</sup>O. For each pair of the spin doublets, the left levels are with  $\kappa < 0$  and the right one with  $\kappa > 0$ . The inset gives the potential and spectrum of  $\Lambda$  in <sup>16</sup>O.

# **2** Spin-orbit splitting

The  $\overline{\Lambda}$  spin-orbit splitting,

$$\Delta E_{s.o} = (\epsilon_{\bar{\Lambda}(n_{j=l-1/2})} - \epsilon_{\bar{\Lambda}(n_{j=l+1/2})})/(2l+1), \tag{10}$$

is plotted as a function of the the average energy,

$$\Xi_{\rm av} = \frac{1}{2} (E_{\bar{\Lambda}(nl_{j=l-1/2})} + E_{\bar{\Lambda}(nl_{j=l+1/2})})$$
(11)



Figure: The spin-orbit splitting  $\Delta E_{s.o}$  for  $\overline{\Lambda}$  and antineutron in <sup>16</sup>O as a function of the average energy  $E_{av}$ .

# **3** Radial wave functions

The dominant component G(r) of the wave functions of the spin doublets are expected to be almost identical,



Figure: Radial wave functions of  $\overline{\Lambda}$  spin doublets with different orbit quantum numbers in <sup>16</sup>O.

# Summary and Perspective

#### Summary

- The spin symmetry in the single Λ
   spectrum in <sup>16</sup>O has been studied within the RMF theory.
- The spin-orbit splittings in the Λ̄ spectrum have been found to be around 0.03-0.07 MeV, which are much smaller than those in antineutron spectrum 0.06-0.20 MeV.
- The dominant components of the Dirac spinor for the Λ
   spin doublets are found to be nearly identical.

#### Perspective

- ¿ What's the polarization effects due to the  $\overline{\Lambda}$ ?
- ¿ How deep is the antinucleon potential in the nuclei?

ί...

