Hadron Molecules

Th. Gutsche Institut für Theoretische Physik Universität Tübingen

Overview

Introductory remarks: meson spectrum and the possibility of hadronic molecules

- The method, diagnostics of decay patterns: compositeness/Weinberg condition and hadron loops
- **D** Open charm systems: $D_{s0}^*(2317) = DK$, $D_{s1}(2460) = D^*K$

Hidden charm systems:
$$X(3872) = D^0 \overline{D}^{*0} + c.c., Y(4140) = D_s^{*+} D_s^{*-}$$

Based on:

PRD 76 (2007) 014003, 014005, 114013; PRD 77 (2008) 094013; EPJA 37 (2008) 303; PRD 79 (2009) 094013, 014035; arXiv:0903.5424 [hep-ph], arXiv:0909.0380 [hep-ph];

together with:

- T. Branz, A. Faessler, V. Lyubovitskij, Y.-L. Ma (Tübingen)
- Y. Dong (Beijing), S. Kovalenko (Valparaiso)

 $QCD \xrightarrow{soft \ limit}$ physical states: mesons and meson spectroscopy

```
Q\bar{Q} " dressed quasiparticle " Q = constituent quark (m_Q \approx 300 \ MeV)
g=" constituent gluon "(usually J^{PC} = 0^{++}) ?
```

Meson spectroscopy

- Spectrum (masses and quantum numbers)
- strong, weak and e.m. decay/production patterns and rates

but:

- anomalous dynamical features in spectrum, decay and production
- extra (scalar states) and missing states (above 2 GeV)
- exotic quantum numbers ($J^{PC} = 1^{-+}$)

Model builders (extraploation, color singlets)

- **9** tetraquark (baryonium) $Q^2 \overline{Q}^2$, Jaffe (1977)
- hybrids $Q\bar{Q}g$, Chanowitz et al. (1983)
- \blacksquare glueball gg, Barnes et al. (1982)

however, conventional theory also predicts meson states!

- meson-meson molecules, Weinstein and Isgur (1979) or dynamically generated resonances, Lohse et al. (1990), Oller et al. (1997)
- \square N \overline{N} bound states, Dover et al. (1992)
- threshold cusp

.

Introduction: Hadronic Molecules

- Hadronic molecules weakly bound states of hadrons
- obvious examples: Nuclei and Hypernuclei
- Meson-Meson bound states, masses slightly below threshold: $m_{HM} < m_{M1} + m_{M2}$
- dynamical generation of molecular bound states/resonances:
 - long-range one-pion-exchange (Tornqvist 1991) \rightarrow table
 - meson exchange models (Lohse et al. 1990)
 - unitarized coupled channel models with chiral Lagrangians (Oller et al. (1997), Lutz et al. (2004), Jido et al. (2005), Gammermann et al. (2008),.....)
- some candidates for hadronic meson-meson molecules
 - \bullet $a_0(980), f_0(980) = K\bar{K}$
 - $D_{s0}^*(2317) = DK, D_{s1}(2460) = D^*K$

 - $Y(4660) = \psi' f_0(980)$

Early predictions: N. Törnqvist, Z. Phys. C 61 (1994)

Table 8. The predicted heavy deuson states (all with I=0) close to the $D\bar{D}^*$ and the $D^*\bar{D}^*$ thresholds and about 50 MeV below the $B\bar{B}^*$ and $B^*\bar{B}^*$ thresholds. As discussed in the text, the mass values are obtained from a rather conservative one-pion exchange contribution only. With additional attraction of shorter range, the masses can decrease considerably. Mixing between the two η_b 's (and two η_c 's) should decrease the lighter mass somewhat (and increase the heavier mass)

Composite	J^{PC}	Deuson
DD [*]	0-+	$\eta_c (\approx 3870)$
$D\bar{D}^*$	1 + +	$\chi_{c1} (\approx 3870)$
$D * \hat{D} *$	0 + +	$\chi_{c0} (\approx 4015)$
D* <i>D</i> *	0-+	$\eta_c (\approx 4015)$
D* D *	1+-	$h_{c0} (\approx 4015)$
$D * \overline{D} *$	2++	$\chi_{c2} (\approx 4015)$
$B\bar{B}^*$	0-+	$n_{\rm h}~(\approx 10~545)$
$B\bar{B}^*$	1++	$\chi_{h1} (\approx 10562)$
$B^* \overline{B}^*$	0 + +	$\chi_{b0} (\approx 10582)$
B* <i>Ē</i> *	0-+	$n_{\rm b}$ (≈ 10590)
B* <u></u> \$	1*-	$h_{\rm h} ~(\approx 10~608)$
$B^*\bar{B}^*$	2++	$\chi_{b2} (\approx 10\ 602)$

Bound state description of hadronic molecules in QFT based on compositeness condition: Z_M = 0. see: Weinberg, PR 130 (1963) 776; Salam, Nuev. Cim. 25 (1962) 224; Hayashi et al., FP 15 (1967) 625;...

Example and test case $f_0(980)$ and $a_0(980)$: Effective Lagrangian, describing coupling, $g_{f_0K\bar{K}}$, of $K\bar{K}$ constituents to f_0 :

$$\mathcal{L}_{f_0 K \bar{K}} = \frac{g_{f_0 K \bar{K}}}{\sqrt{2}} f_0(x) \int dy \, \Phi(y^2) \bar{K} \left(x - \frac{y}{2} \right) K \left(x + \frac{y}{2} \right) \,, \quad K = \begin{pmatrix} K^+ \\ K^0 \end{pmatrix}$$

Vertex function $\Phi(y^2)$ – finite size effects/distribution of constituents in bound state:

local limit: $\Phi(y^2) \rightarrow \delta^{(4)}(y)$

momentum space: $\tilde{\Phi}(p_E^2) = \exp(-p_E^2/\Lambda^2)$, Gaussian with free size parameter Λ .

The method: Compositeness/Weinberg condition

Bound state description and compositeness condition:

$$Z_{f_0} = 1 - g_{f_0 K \bar{K}}^2 \tilde{\Pi}'(m_{f_0}^2) = 0$$

with the mass operator $\tilde{\Pi}(p^2)$ represented by:

$f_0(980) \rightarrow \gamma\gamma$ and $a_0(980) \rightarrow \gamma\gamma$

(see Branz, TG, Lyubovitskij: EPJA 37 (2008) 303; PRD 78 (2008) 114013)

	$\Gamma_{f_0 o \gamma \gamma}$ [keV]
PDG (2008)	$0.29\substack{+0.07 \\ -0.09}$
Theo. (Λ =1 GeV)	0.25
Theo. (local lim.)	0.29

$\Gamma_{a_0 ightarrow \gamma \gamma}$ [keV]
0.30 ± 0.1
0.19
0.23

Basics about $D_{s0}^{*}(2317)$ and $D_{s1}(2460)$

- Both states confirmed by BELLE (2004)
- $\Gamma_{D_{s0}^*}$ < 3.8 MeV, $\Gamma_{D_{s1}}$ < 3.5 MeV
- quantum numbers $J^P(D_{s0}^*) = 0^+$ and $J^P(D_{s1}) = 1^+$

 $D_{s0}^*(2317) \text{ close to } DK \text{ threshold with } m_{thr} = 2362 \text{ MeV}; \\ D_{s1}(2460) \text{ close to } D^*K \text{ threshold with } m_{thr} = 2503 \text{ MeV}.$

b but, few ratios for rates (or upper limits) for $D_{s0}^*(2317)$:

 $\frac{\Gamma(D_{s0}^*(2317)^+ \to D_s^*(2112)^+ \gamma)}{\Gamma(D_{s0}^*(2317)^+ \to D_s^+ \pi^0)} < 0.059$

and for ratio of dominant decay modes of $D_{s1}(2460)$:

 $\frac{\Gamma(D_{s1}(2460)^+ \to D_s^+ \gamma)}{\Gamma(D_{s1}(2460)^+ \to D_s^{*+} \pi^0)} = 0.44 \pm 0.09$

 $J^P = 0^+ c\bar{s}$ expected between 2400 - 2500 MeV !

 $D_{s0}^{*}(2317)(0^{+})$ and $D_{s1}(2460)(1^{+})$ as hadronic molecules:

$$|D_{s0}^{*+}\rangle = |D^{+}K^{0}\rangle + |D^{0}K^{+}\rangle \qquad |D_{s1}^{+}\rangle = |D^{*+}K^{0}\rangle + |D^{*0}K^{+}\rangle$$

Coupling of the hadronic molecules to the constituents

$$\mathcal{L}_{D_{s0}^*}(x) = g_{D_{s0}^*} D_{s0}^{*-}(x) \int dy \, \Phi_{D_{s0}^*}(y^2) D^T(x + w_K y) K(x - w_D y) + \text{H.c.}$$

with the doublets

$$D = \begin{pmatrix} D^0 \\ D^+ \end{pmatrix}, K = \begin{pmatrix} K^+ \\ K^0 \end{pmatrix} \text{ and } w_{ij} = \frac{m_i}{m_i + m_j}$$

Resulting in: $g_{D_{s0}^*} = 10.58 \pm 0.68 \text{ GeV} (g_{D_{s1}} = 10.90 \pm 0.72 \text{ GeV}).$

with Gaussian vertex function: $\tilde{\Phi}(p_E^2) = \exp(-p_E^2/\Lambda^2)$ and $\Lambda = 1 - 2$ GeV.

(see Faessler, TG, Lyubovitskij, Ma, PRD 76, 014005, 114008 (2007))

Direct and $\eta - \pi^0$ mixing mechanisms

isospin violation $\tan(2\epsilon) = \frac{\sqrt{3}}{2} \frac{m_d - m_u}{m_s - \hat{m}}$ Gasser (1984)

Strong decay $D_{s1} \rightarrow D_s^* \pi^0$

including direct and $\eta - \pi^0$ mixing transition

Effective interaction Lagrangian

$$\mathcal{L}_{int} = -\frac{g_{D^*D\pi}}{2\sqrt{2}} D_{\mu}^{*\dagger} \hat{\pi}_D i \overleftrightarrow{\partial}^{\mu} D + \frac{g_{K^*K\pi}}{\sqrt{2}} K_{\mu}^{*\dagger} \hat{\pi}_K i \overleftrightarrow{\partial}^{\mu} K$$

$$+ g_{D^*D_sK} D_{\mu}^{*T} K i \overleftrightarrow{\partial}^{\mu} D_s^{-} + g_{D_s^*DK} D_{s\mu}^{*-} D^T i \overleftrightarrow{\partial}^{\mu} K$$

$$- ig_{K^*D_s^*D^*} \left[D_s^{*-\mu\nu} D_{\mu}^* K_{\nu}^* + D^{*\mu\nu} K_{\mu}^* D_{s,\nu}^{*-} + K^{*\mu\nu} D_{s,\mu}^{*-} D_{\nu}^*(x) \right]$$

$$+ \mathcal{L}_{D_{s0}^*} + \mathcal{L}_{D_{s1}} + H.c.$$

including $\pi^0 - \eta$ mixing:

 $\begin{aligned} \pi_3 \to \pi_3 \cos \epsilon - \eta \sin \epsilon & \hat{\pi}_D = \pi_1 \tau_1 + \pi_2 \tau_2 + \pi_3 (\tau_3 \cos \epsilon + I \sin \epsilon / \sqrt{3}) \\ \eta \to \pi_3 \sin \epsilon + \eta \cos \epsilon & \hat{\pi}_K = \pi_1 \tau_1 + \pi_2 \tau_2 + \pi_3 (\tau_3 \cos \epsilon + I \sin \epsilon \sqrt{3}) \end{aligned}$

with $\tan 2\varepsilon = \frac{\sqrt{3}}{2} \frac{m_d - m_u}{m_s - \hat{m}} \simeq 0.02$ (Gasser 1984) and couplings

 $g_{D^*D\pi} = 17.9, \ g_{K^*K\pi} = 4.61$ fixed by data, $g_{D^*D\eta} = 7.95, \ g_{K^*K\eta} = 6.14$ HHChPt $g_{D^*D_sK} = g_{K^*D_sD} = 2.02, \ g_{D_s^*DK} = g_{D_s^*D^*K^*} = 1.84$ QCD sum rules (Wang 2006)

Radiative decay $D_{s0}^* \rightarrow D_s^* \gamma$

similarly for
$$D_{s1} \rightarrow D_s \gamma$$

Results for strong decays (in keV)

Approach	$\Gamma(D_{s0}^* \to D_s \pi^0)$	$\Gamma(D_{s1} \to D_s^* \pi^0)$
Nielsen 2005 (tetraquark)	6 ± 2	
Colangelo 2003 ($car{s}$, HQS)	7 ± 1	7 ± 1
Godfrey 2003 ($c\bar{s}$)	10	10
Fayyazuddin 2003 ($car{s}$)	16	32
Bardeen 2003 ($c\bar{s}$)	21.5	21.5
Lu 2006 ($car{s}$)	32	35
Wei 2005 ($car{s}$, QCDSR)	39 ± 5	43 ± 8
Ishida 2004 ($car{s}$)	155 — 70	155 — 70
Cheng 2003 (tetraquark)	10 — 100	
Azimov 2004 ($car{s}$)	129 ± 43	187 ± 73
Our result (HM)	46.7 — 111.9	50.1 - 79.2
Lutz 2007 (HM, χ NLO)	140	140
Guo 2008 (HM, χ NLO)	180 ± 110	

Results for radiative decays (in keV)

Approach	$\Gamma(D_{s0}^* \to D_s^* \gamma)$	$\Gamma(D_{s1} \to D_s \gamma)$
Fayyazuddin 2003 ($c\overline{s}$)	0.2	
Colangelo 2003 ($c\bar{s}$, HQS)	0.85 ± 0.05	
Close 2005 ($c\bar{s}$)	1	\leq 7.3
Liu 2006 ($c\overline{s}$)	1.1	0.6-2.9
Wang 2006 ($car{s}$)	1.3 – 9.9	5.5 — 31.2
Azimov 2004 ($c\overline{s}$)	\leq 1.4	\leq 2
Bardeen 2003 ($c\bar{s}$)	1.74	5.08
Godfrey 2003 ($c\bar{s}$)	1.9	6.2
Colangelo 2005 ($c\overline{s}$, QCDSR)	4 – 6	19 — 29
Ishida 2003 ($car{s}$)	21	93
Our results (HM)	0.47 - 0.63	2.73 - 3.73
Lutz 2007 (HM, χ NLO)	< 7	pprox 43.6
Gamermann 2007 (HM)	0.488	

Results for ratios $R_{D_{s0}^*} = \Gamma(D_{s0}^* \to D_s^* \gamma) / \Gamma(D_{s0}^* \to D_s \pi)$ $R_{D_{s1}} = \Gamma(D_{s1} \to D_s \gamma) / \Gamma(D_{s1} \to D_s^* \pi)$

Approach	$R_{D_{s0}}$	$R_{D_{s1}}$
Azimov 2004 ($car{s}$)	≤ 0.02	0.01 - 0.02
Bardeen 2003 ($c\overline{s}$)	0.08	0.24
Lutz 2007 (HM, χ NLO)	\leq 0.05	\simeq 0.31
Ishida 2003 ($car{s}$)	0.09 - 0.25	0.41 - 1.09
Godfrey 2003 ($c\bar{s}$)	0.19	0.62
PDG 2008	≤ 0.059	0.44 ± 0.09
Our result (HM)	$\simeq 0.01$	$\simeq 0.05$

Basics about X(3872)

- first seen in $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ by BELLE (2003), also seen by CDF, D0 (2004) and BABAR (2005).
- \square $\Gamma_X \approx$ 3 MeV
- quantum numbers:
 - C=+ from $X(3872) \rightarrow \gamma J/\psi$, l=0 no signal in $X \rightarrow \pi \pi^0 J/\psi$

 $J^{PC} = 1^{++}$ or $J^{PC} = 2^{-+}$ from $X(3872) \rightarrow J/\psi \pi^+ \pi^-$ helicity amplitude analysis

- $I = X(3872.2 \pm 0.8)$ close to $D^0 \overline{D}^{*0}$ threshold with $m_{thr} = 3871.81 \pm 0.36$ MeV;
- S-wave $D^0 \overline{D}^{*0}$ hadron molecule favors $J^{PC} = 1^{++}$
- charmonium interpretation disfavored, $1^{++}(2^3P_1)$ too low in mass compared to $m(2^3P_2) \approx m(Z(3930))$

Basics about X(3872), Decay Modes

■ $\Gamma(\mathbf{X} \to \psi(\mathbf{2S})\gamma)/\Gamma(\mathbf{X} \to \mathbf{J}/\psi\gamma) = 3.5 \pm 1.4$ BABAR, PRL 102, (2009) possible evidence for charmonium component ?

Aim: results for decay rates of the X(3872)

Ansatz: X(3872) is S-wave molecule with $J^{PC} = 1^{++}$

$$|X(3872)\rangle = \cos\theta \left[\frac{Z_{D^0 D^{*0}}^{1/2}}{\sqrt{2}} (|D^0 \bar{D}^{*0}\rangle + |D^{*0} \bar{D}^0\rangle) + \frac{Z_{D^{\pm} D^{*\mp}}^{1/2}}{\sqrt{2}} (|D^+ D^{*-}\rangle + |D^- D^{*+}\rangle) + Z_{J_{\psi} \omega}^{1/2} |J_{\psi} \omega\rangle + Z_{J_{\psi} \rho}^{1/2} |J_{\psi} \rho\rangle \right] + \sin\theta |c\bar{c}\rangle$$

 $(m_{D^0} = 1864.85 \text{ MeV}, m_{D^{*0}} = 2006.7 \text{ MeV}, m_x = m_{D^0} + m_{D^{*0}} - \epsilon)$

b dominant
$$|D^0\bar{D}^{*0}\rangle + |D^{*0}\bar{D}^0\rangle$$
 component

- small admixture of $1^{++} c\bar{c}$ component: $\propto \sin \theta$

Compositeness condition: $Z_X = 1 - (\Sigma_X^M(m_X^2))' - (\Sigma_X^C(m_X^2))' = 0$ fixes coupling of X to its components

$X(3872) \rightarrow J/\psi, \psi(2S) + \gamma$

Interaction Lagrangian and couplings:

$$\begin{split} \mathcal{L}_{J_{\psi}} &= g_{J_{\psi}} \ J_{\psi}^{\mu} \ \bar{c} \gamma_{\mu} c \\ \text{with } g_{J_{\psi}} &\approx 5 \text{ fixed from } \Gamma(J/\psi \to e^{+}e^{-}) \approx 5.55 \text{ keV.} \end{split}$$

$$\mathcal{L}_{J_{\psi}DD} = ig_{J_{\psi}DD} J_{\psi}^{\mu} \left(D^{0}\partial_{\mu}\bar{D}^{0} - \bar{D}^{0}\partial_{\mu}D^{0} \right)$$
$$\mathcal{L}_{J_{\psi}D^{*}D^{*}} = ig_{J_{\psi}D^{*}D^{*}} \left(J_{\psi}^{\mu\nu} \bar{D}_{\mu}^{*0} D_{\nu}^{*0} + J_{\psi}^{\mu} \bar{D}^{*0\nu} D_{\mu\nu}^{*0} + J_{\psi}^{\nu} \bar{D}_{\mu\nu}^{*0} D^{*0\mu} \right)$$

fixed from world averaged values: $g_{J_{\psi}DD} = g_{J_{\psi}D^*D^*} = 6.5$

 $\mathcal{L}_{D^*D\gamma} = \frac{e}{4} g_{D^{*0}D^0\gamma} \epsilon^{\mu\nu\alpha\beta} F_{\mu\nu} \bar{D}^{*0}_{\alpha\beta} D^0$

with $g_{D^{*0}D^{0}\gamma} \approx 2 \ GeV^{-1}$ fixed from $BR(D^{*0} \rightarrow D^{0}\gamma) = 38.1\%$

Configuration	$\Gamma(X(3872) \rightarrow \gamma J/\gamma)$	$\psi, \ \gamma \psi(2S)) \ {\sf keV}$
molecular DD^* component	60 - 120(J/ψ)	0.3 ($\psi(2S)$)
pure $J/\psi V$ component	$6(J/\psi)$	0 ($\psi(2S)$)
interfering DD^* and $J/\psi V$ components	30 - 65 (J/ψ)	0.3 ($\psi(2S)$)

additional charmonium contribution with $Z_{c\bar{c}}^{1/2} = sin\theta \approx -0.2$ required

Dong, Faessler, TG, Kovalenko, Lyubovitskij, PRD 77 (2008), 79 (2009), 0909.0380 [hep-ph]

Assumption that $X(3872) \rightarrow J/\psi + h$ proceeds via $J/\psi\omega$ and $J/\psi\rho$ components (see also Braaten and Kusunoki PRD 69 (2004)):

Quantity	Nonlocal case
$\Gamma(X ightarrow J/\psi \pi^+\pi^-)$, keV	$9.0 imes 10^3 Z_{J_\psi ho}$ (54.0)
$\Gamma(X \to J/\psi \pi^+ \pi^- \pi^0)$, keV	$1.38 imes 10^3 Z_{J_\psi \omega}$ (56.6)
$\Gamma(X ightarrow J/\psi \pi^0 \gamma)$, keV	$0.23 imes 10^3 Z_{J_\psi \omega}$ (9.4)
$\frac{\Gamma(X \to J/\psi \pi^+ \pi^- \pi^0)}{\Gamma(X \to J/\psi \pi^+ \pi^-)} = 1.0 \pm 0.4 \pm 0.3$	1.05
$\frac{\Gamma(X \to J/\psi\gamma)}{\Gamma(X \to J/\psi\pi^+\pi^-)} = 0.14 \pm 0.05; 0.33 \pm 0.12$	0.10

Explicit numbers for configuration of Swanson (2004) at $\epsilon = 0.3$ MeV.

Subleading $J/\psi\omega$, $J/\psi\rho$ and $c\bar{c}$ components dominate ratios !

$$X(3872) \rightarrow \chi_{cJ} + \pi^0, 2\pi J^P = 0^+, 1^+, 2^+$$

 \mathbf{D}^{*0}

 \mathbf{D}^{*0}

 $\pi^{\mathbf{0}}$

Quantity	D^0D^{*0} loop	$D^0 D^{*0} + D^- D^{*+}$
		[exact]
$\Gamma(X \to \chi_{c0} + \pi^0)$, keV	41.1 Z _{D⁰D*⁰} (37.8)	61.0
$\Gamma(X \to \chi_{c0} + 2\pi^0)$, eV	63.3 Z _{D⁰D*⁰} (58.2)	94.0
$\Gamma(X \to \chi_{c1} + \pi^0)$, keV	11.1 Z _{D⁰D*0} (10.2)	16.4
$\Gamma(X o \chi_{c1} + 2\pi^0)$, eV	743 Z _{D⁰D*⁰} (683.6)	1095.2
$\Gamma(X \to \chi_{c2} + \pi^0)$, keV	15 Z _{D⁰D*⁰} (13.8)	22.1
$\Gamma(X \to \chi_{c2} + 2\pi^0)$, eV	20.6 Z _{D⁰D^{*0}} (19.0)	30.4

using $Z_{D^0 D^{*0}} = 0.92$, $Z_{D^{\pm} D^{*\mp}} = 0.033$ for $\epsilon = 0.3$ MeV (Swanson 2004)

sensitive to leading molecular component

Y(4140)

Basics about Y(4140)

- First seen in exclusive decays B⁺ → Y(4140)K⁺ with Y(4140) → J/ψ φ by CDF (PRL (2009)) m_{Y(4140)} = 4130.0 ± 2.9(stat) ± 1.2(syst) MeV, Γ_{Y(4140)} = 11.7^{+8.3}_{-5.0}(stat) ± 3.7(syst) MeV
- Decays of $c\bar{c}$ states to open charm decay modes dominate, $\Gamma(c\bar{c} \rightarrow J/\psi \phi) \approx 0 \, !!$ (OZI suppressed) see for example Eichten, Godfrey, Mahlke, Rosner, RMP 80 (2008)
- similar to Y(3940) observed by Belle and BABAR in $\omega J/\psi$ decays, interpretation as $|Y(3940)\rangle = \frac{1}{\sqrt{2}} (|D^{*+}D^{*-}\rangle + |D^{*0}\overline{D^{*0}}\rangle)$ molecular state.

Selected decays of Y(4140)

From HHChPT Lagrangian (Colangelo (2003), Wise (1992)): $\mathcal{L}_{D^*D^*J_{\psi}} = ig_{D^*D^*J_{\psi}} J^{\mu}_{\psi} \Big(D^{*\dagger}_{\mu i} \stackrel{\leftrightarrow}{\partial}_{\nu} D^{*\nu}_{i} + D^{*\dagger}_{\nu i} \stackrel{\leftrightarrow}{\partial}^{\nu} D^{*}_{\mu i} - D^{*\dagger\nu}_{i} \stackrel{\leftrightarrow}{\partial}_{\mu} D^{*}_{\nu i} \Big)$ $\mathcal{L}_{D^*D^*V} = ig_{D^*D^*V} V^{\mu}_{ij} D^{*\dagger}_{\nu i} \stackrel{\leftrightarrow}{\partial}_{\mu} D^{*\nu}_{j} + 4if_{D^*D^*V} (\partial^{\mu}V^{\nu}_{ij} - \partial^{\nu}V^{\mu}_{ij}) D^{*}_{\mu i} D^{*\dagger\nu}_{j}$

Decay properties of Y(3940) and Y(4140)

Quantity	Y(3940)	Y(4140)
$\Gamma(Y \rightarrow J/\psi \ V = \phi, \omega), {\sf MeV}$	5.47	3.26
$\Gamma(Y \to \gamma \gamma)$, keV	0.33	0.63

sizable $J/\psi \phi$ can be explained (Branz, TG, Lyubovitskij, 0903.5424 [hep-ph])

Conclusions

- hadron molecules: old expectations renewed interest in heavy meson sector
- QFT approach to hadronic molecules (compositeness condition)
- Aim: detailed predictions for new heavy mesons and their strong, radiative and weak decay properties dynamics dominated by hadron loops
- open charm system: $D_{s0}^*(2317) = DK$, $D_{s1}(2460) = D^*K$, good candidates, even converging HM calculations
- hidden charm system

 $X(3872) = D^0 \bar{D}^{\ast 0} + c.c.,$ but present decay modes are dominated by subleading components

 $Y(4140) = D_s^{*+} D_s^{*-}$ good candidate, open charm modes.

em interaction is generated by minimal substitution:

i.e. $\partial^{\mu}K^{\pm} \rightarrow (\partial^{\mu} \mp ieA^{\mu})K^{\pm}$

 $\mathcal{L}_{f_0 K \overline{K}}$ has also to be gauged with (J. Terning, PRD44 (1991)):

 $K^{\pm} \to e^{\mp i e_p I(x,y)} K^{\pm}(y), \ I(x,y) = \int_x^y dz_{\mu} A^{\mu}(z)$

leading to vertex couplings (relevant to fulfill gauge invariance):

Radiative decays: $\mathbf{S} \to \gamma \mathbf{V}$ ($S = f_0, a_0; V = \omega, \rho$) and $\phi \to \gamma S$

Gauging of

$$\mathcal{L}_{V} = \sum_{V=\phi,\omega} \frac{g_{VK\bar{K}}}{\sqrt{2}} V^{\mu} (\bar{K}i\partial_{\mu}K - Ki\partial_{\mu}\bar{K}), \quad \mathcal{L}_{\rho} = \frac{g_{VK\bar{K}}}{\sqrt{2}} \vec{\rho}^{\mu} (\bar{K}\vec{\tau}\,i\partial_{\mu}K - K\vec{\tau}\,i\partial_{\mu}\bar{K}),$$

with couplings: $g_{VK\bar{K}} = g_{\rho K\bar{K}} = g_{\omega K\bar{K}} = 4.24$ and $g_{\phi K\bar{K}} = 6$ (*SU*(3) symmetry relations, Zhang et al. PRD74 (2006))

Results for radiative decays: $\mathbf{S} \to \gamma \mathbf{V}$ ($S = f_0, a_0; V = \omega, \rho$) and $\phi \to \gamma S$

prediction in local limit:

 $\Gamma(\phi \to f_0 \gamma) = 0.57 \text{ keV}, \quad \Gamma(\phi \to a_0 \gamma) = 0.33 \text{ keV}$

from PDG(2007): $\Gamma(\phi \to a_0 \gamma) / \Gamma_{total} = (0.76 \pm 0.06) \cdot 10^{-4}$ $\Gamma(\phi \to f_0 \gamma) / \Gamma_{total} = (1.11 \pm 0.07) \cdot 10^{-4}$

 \rightarrow $\Gamma(\phi \rightarrow f_0 \gamma) \approx 0.47$ keV, $\Gamma(\phi \rightarrow a_0 \gamma) \approx 0.32$ keV.

further predictions ($\Lambda = 1 \ GeV$ and local limit):

 $\Gamma(f_0 \to \rho \gamma) = 7.59(8.10) \ keV \qquad \Gamma(f_0 \to \omega \gamma) = 7.13(7.58) \ keV$ $\Gamma(a_0 \to \rho \gamma) = 6.60(7.19) \ keV \qquad \Gamma(a_0 \to \omega \gamma) = 6.22(6.77) \ keV$ Strong decays $f_0 \rightarrow \pi\pi$ and $a_0 \rightarrow \pi\eta$

based on:

 $\mathcal{L}_{K^*K\pi} = \frac{g_{K^*K\pi}}{\sqrt{2}} K_{\mu}^{*\dagger} \vec{\pi} \vec{\tau} \, i \overleftrightarrow{\partial}^{\mu} K + h.c \,, \, \mathcal{L}_{K^*K\eta} = \frac{g_{K^*K\eta}}{\sqrt{2}} K_{\mu}^{*\dagger} \eta \, i \overleftrightarrow{\partial}^{\mu} K + h.c \,, \, \mathcal{L}_{U}(x) = \frac{F^2}{4} \langle D_{\mu} U(x) D^{\mu} U^{\dagger}(x) + \chi U^{\dagger}(x) + \chi^{\dagger} U(x) \rangle$

 $\Gamma(f_0 \to \pi \pi) = 45 - 90 \text{ MeV}(\Lambda = 0.8 - 1.2 \text{ GeV})$ compared to 40 - 100 MeV (PDG) $\Gamma(a_0 \to \pi \eta) = 48 - 93 \text{ MeV}(\Lambda = 0.8 - 1.2 \text{ GeV})$ compared to 50 - 100 MeV (PDG)

Strong decay $D_{s0}^* \rightarrow D_s \pi^0$

