Scalar & Pseudoscalar Higgs Couplings with Nucleons

Hai-Yang Cheng Academia Sinica

Based on the work with Cheng-Wei Chiang

Oct 26, 2012

HFCPV-2012, Qingdao

Interactions of dark matter with nucleons mediated by scalar Higgs ϕ or pseudoscalar σ can be probed by studying spin-independent & spin-dependent cross sections

History

Shifman, Vainstein, Zakharov ('78) were the first to study Higgs-nucleon

couplings $g_{\phi NN}$ and showed that it is dominated by heavy quarks

- **T.** P. Cheng ('88), HYC ('89) \Rightarrow $g_{\phi NN}$ dominated by s quark
- HYC ('89) \Rightarrow pseudoscalar Higgs coupling with nucleons studied in chiral & large N_c limits
- Calculations of higher order terms in ChPT available in 90's Gasser, Leutwyler, Sainio ('91); Jenkins, Manohar ('92); Borasoy, Meissner ('96,'97)
- Intense lattice studies after 2008 on various sigma terms and strange quark fraction in the nucleon
- Many new determinations of pion-nucleon sigma terms from π-N scattering data since 2000
- Study of SU(3) breaking effect on the determination of g_A⁸ & ∆s in recent years

Scalar Higgs

$$g_{\phi NN} = (\sqrt{2}G_F)^{1/2} \sum \langle N | \varsigma_q m_q \overline{q} q | N \rangle$$

 ζ_q =1 in SM, but not necessarily so in BSM. Relevant nucleon matrix elements are related to the trace of energy-momentum tensor Θ^{μ}_{μ} Under heavy quark expansion m_h $\underline{q}_h q_h \rightarrow -(2\alpha_s/8\pi)GG$ svz ('78)

$$\Theta^{\mu}_{\ \mu} = m_u \overline{u} u + m_d \overline{d} d + m_s \overline{s} s + \sum m_h \overline{q}_h q_h + (\beta / 4\alpha_s) GG$$

$$\rightarrow m_u \overline{u} u + m_d \overline{d} d + m_s \overline{s} s - (9\alpha_s / 8\pi) GG$$

Under light quark expansion, baryon mass is given by

$$m_{\mathcal{B}} = m_0 + \sum_q b_q m_q + \sum_q c_q m_q^{3/2} + \sum_q d_q m_q^2 \ln \frac{m_q}{m_0} + \sum_q e_q m_q^2 + \mathcal{O}(m_q^3)$$

To first order, baryon masses can be expressed in terms of $B_u = \langle p | \underline{u} u | p \rangle$, $B_d = \langle p | \underline{d} d | p \rangle$, $B_s = \langle p | \underline{s} s | p \rangle$ with SU(3) symmetry

$$B_u - B_s = \frac{2(m_{\Xi} - m_N)}{2m_s - m_u - m_d} = 3.94 \qquad B_d - B_s = \frac{2(m_{\Sigma} - m_N)}{2m_s - m_u - m_d} = 2.64$$

To determine B_u , B_d , B_s , we define several quantities:

- strange quark content of the proton: y=2B_s/(B_u+B_d)
- pion-nucleon sigma term: $\sigma_{\pi N} \equiv \hat{m} \langle N | \bar{u}u + \bar{d}d | N \rangle$, $\hat{m} = (m_u + m_d)/2$
- **sigma term** σ_0 : $\sigma_0 \equiv \hat{m} \langle N | \bar{u}u + \bar{d}d 2\bar{s}s | N \rangle$
- quark sigma term: σ_q= m_q<p|qq|p>

 $\sigma_{\pi N}$ & σ_0 are related by $\sigma_{\pi N} = \sigma_0 / (1-y)$ and σ_0 can be fixed by baryon masses to be ~ 24 MeV.

In 80's $\sigma_{\pi N}$ = 55 ~ 60 MeV \Rightarrow large strange quark content y ~ 0.5-0.6 and σ_u ~ 20 MeV, σ_d ~ 33 MeV, σ_s ~ 390 MeV Strange quark content y and sigma terms $\sigma_{\pi N}$ and σ_s are reduced in 90's:

- 1. higher order expansion terms in $m_q^{3/2}$ and m_q^2
 - σ₀ ~ 36 MeVBorasoy, Missner ('97); Jenskin, Manohar ('92);
Gasser, Leutwyler, Saino ('91)
- 2. $\Sigma_{\pi N} = 64 \pm 8$ MeV extracted from πN scattering data Koch ('82)

 $\Rightarrow \sigma_{\pi \mathrm{N}} = \Sigma_{\pi \mathrm{N}} - \Delta_{\sigma} - \Delta_{\mathsf{R}} \sim \textbf{45 MeV}$

2.
$$y = \sigma_0 / \sigma_{\pi N} \sim 0.2 \implies \sigma_s \sim 130 \text{ MeV}$$

Sigma terms and strange quark content in 90's:

 $\sigma_{\pi N}$ ~ 45 MeV, $~\sigma_{0}$ ~ 36 MeV, $~\sigma_{s}$ ~ 130 MeV, y ~ 0.2

Intense lattice studies of σ_s in past few years

 $\sigma_{s} = 43 \pm 8 \text{ MeV} \quad \text{(2011)} \\ \sim 20 - 60 \text{ MeV} \quad \text{circa 2012}$

y lies in the range 0.05 ~0.20

 $\sigma_{\pi N} = 37 \pm 10$ QCDSF ('12) 39 $\pm 4^{+18}$ -7 Durr et al ('11)

For σ_s = 50 MeV as an example, $\Rightarrow \sigma_{\pi N}$ - σ_0 = 4 MeV & y ~ 0.1

$$g_{\phi NN} = (\sqrt{2}G_F)^{1/2} \left(\sigma_u + \sigma_d + \sigma_s + \frac{2}{27}(m_N - \sigma_u - \sigma_d - \sigma_s) \right) \qquad \text{for } \zeta_q = 1 \text{ & three} \\ \text{heavy quarks}$$

dominated by heavy quark contributions

σ_s	σ_u	σ_d	$\sigma_{\pi N}$	$\langle p rac{lpha_s}{4\pi}GG p angle$	y	$g_{\phi NN}$
60	15.9	22.3	40.5	-187	0.11	$1.2 imes 10^{-3}$
50	15.6	21.8	39.8	-189	0.09	$1.1 imes 10^{-3}$
40	15.4	21.3	39.0	-191	0.08	1.1×10^{-3}

7

Consider $\pi N \rightarrow \pi N$ scattering amplitude & define

 $\Sigma_{\pi N} \equiv F_{\pi^2} D^+$ at Cheng-Dashen point, $s = u = m_N^2$, $t = 2m_{\pi^2}$

 $\Sigma_{\pi N} = \sigma_{\pi N} (2m_{\pi}^2) + \Delta_R = \sigma_{\pi N} (0) + \Delta_{\sigma} + \Delta_R \text{ with } \Delta_{\sigma} = 15 \text{ MeV}, \Delta_R = 2 \text{ MeV}$

Since Cheng-Dashen point is outside of physical region, one relies on dispersion relation to extract Σ from the data

- Koch ('82) : Σ = 64 \pm 8 \Rightarrow $\sigma_{\pi N}$ ~ 45 MeV, benchmark in 90's
- **Olsson ('00):** $\Sigma = 73 \pm 9$
- Hite et al. ('05): $\Sigma = 81 \pm 6$ $\Rightarrow \sigma_{\pi N} \sim 60-65$ MeV after 2000 • Pavan et al. ('02): $\Sigma = 79 \pm 7$
- - Alarcon et al. ('11): $\Sigma = 76 \pm 7 \int$ (a different approach)
 - A conflict between lattice and expt'l results for $\sigma_{\pi N}$? **Decouplets will enhance** $\sigma_{u,d}$, and hence $\sigma_{\pi N}$, σ_0 and suppress y?

Alarcon et al. 1209.2870

Pseudoscalar Higgs

$$g_{\sigma NN} = (\sqrt{2}G_F)^{1/2} \sum \langle N | \xi_q m_q \overline{q} i \gamma_5 q | N \rangle$$

Heavy quark expansion: $m_h \bar{q}_h i \gamma_5 q_h \rightarrow -\frac{\alpha_s}{8\pi} G \tilde{G} \qquad G \tilde{G} \equiv \frac{1}{2} \epsilon_{\mu\nu\alpha\beta} G^{a\mu\nu} G^{a\alpha\beta}$

 $E_{a} = \langle N | \underline{q} i \gamma_{5} q | N \rangle$ are related to nucleon m.e. of axial-vector currents

$$\begin{cases} A^3_{\mu} = \bar{u}\gamma_{\mu}\gamma_{5}u - \bar{d}\gamma_{\mu}\gamma_{5}d , & \underbrace{\mathsf{EOM}} \\ A^8_{\mu} = \bar{u}\gamma_{\mu}\gamma_{5}u + \bar{d}\gamma_{\mu}\gamma_{5}d - 2\bar{s}\gamma_{\mu}\gamma_{5}s \\ A^0_{\mu} = \bar{u}\gamma_{\mu}\gamma_{5}u + \bar{d}\gamma_{\mu}\gamma_{5}d + \bar{s}\gamma_{\mu}\gamma_{5}s , \end{cases} \begin{cases} g^3_A m_N = m_u E_u - m_d E_d , \\ g^8_A m_N = m_u E_u + m_d E_d - 2m_s E_s , \\ g^0_A m_N = m_u E_u + m_d E_d + m_s E_s + 3 \left\langle N \left| \frac{\alpha_s}{8\pi} G\tilde{G} \right| N \right\rangle \end{cases}$$

Axial-vector couplings g_A³, g_A⁸ determined from neutron and hyperon β decays, g_{A^0} from polarized DIS experiment

$$\int_0^1 g_1^p(x,Q^2) dx = C_{\rm NS}(Q^2) \left(\frac{1}{12}g_A^3 + \frac{1}{36}g_A^8\right) + \frac{1}{9}C_{\rm S}(Q^2)g_A^0(Q^2)$$

$$g_A^3(Q^2) = \Delta u(Q^2) - \Delta d(Q^2) ,$$

$$g_A^8(Q^2) = \Delta u(Q^2) + \Delta d(Q^2) - 2\Delta s(Q^2) \qquad \Delta q: \text{ net quark helicity component}$$

$$g_A^0(Q^2) = \Delta u(Q^2) + \Delta d(Q^2) + \Delta s(Q^2) , \qquad 9$$

9

Need one more relation to determine $\langle N|\underline{q}i\gamma_5q|N\rangle$

Some proposals before:

- Large-N_c and chiral limits $\Rightarrow E_u + E_d + E_s = 0$ HYC ('89)
- <p|GG̃|p> is related to gluon spin component

 $2m_N \Delta G \, \bar{u} i \gamma_5 u = \langle p | G \tilde{G} | p \rangle$ Cheng, Li ('89); Geng, Ng ('90)

However, (i) there is no twist-2 local operator definition for ΔG in OPE, (ii) <N|GG|N> violates isospin symmetry Gross, Treiman, Wilczek ('79)

Strong CP-odd operator replaced by quark operator

$$-(g^{2}/32\pi^{2})\theta G\tilde{G} \rightarrow \theta \,\overline{m}(\overline{u}i\gamma_{5}u + \overline{d}i\gamma_{5}d + \overline{s}i\gamma_{5}d), \quad \overline{m} = (1/m_{u} + 1/m_{d} + 1/m_{s})^{-1}$$
Baluni ('79)

 $\overline{m}(E_u + E_d + E_s) = -\langle N | \frac{\alpha_s}{8\pi} GG | N \rangle$ No solutions for E_u, E_d, E_s !

U(1) Goldberger-Treiman relation

$$g_A^0 = \frac{\sqrt{3}f_\pi}{2m_N}g_{\eta_0NN} + \cdots \text{ in chiral limit } \qquad \Longrightarrow \qquad \left\langle N \left| \frac{\alpha_s}{8\pi} G\tilde{G} \right| N \right\rangle = \frac{f_\pi}{2\sqrt{3}}g_{\eta_0NN} + \cdots \right\rangle$$

Large-N_c and chiral relation $<p|\underline{u}i\gamma_5u+\underline{d}i\gamma_5d+\underline{s}i\gamma_5s|p>=0$

$$E_{u} = \frac{1}{2} \frac{m_{N}}{m_{d}m_{s}(1+z+w)} \left[(m_{d}+2m_{s})g_{A}^{3} + m_{d} g_{A}^{8} \right],$$

$$E_{d} = \frac{1}{2} \frac{m_{N}}{m_{d}m_{s}(1+z+w)} \left[-(m_{u}+2m_{s})g_{A}^{3} + m_{u}g_{A}^{8} \right],$$

$$E_{s} = \frac{1}{2} \frac{m_{N}}{m_{d}m_{s}(1+z+w)} \left[(m_{u}-m_{d})g_{A}^{3} - (m_{u}+m_{d})g_{A}^{8} \right],$$

$$\left\langle N \left| \frac{\alpha_s}{8\pi} G \tilde{G} \right| N \right\rangle = \frac{1}{2} \frac{m_N}{m_d m_s (1+z+w)} \left\{ \frac{2}{3} m_d m_s (1+z+w) g_A^0 + m_s (m_d - m_u) g_A^3 + \frac{1}{3} [m_s (m_u + m_d) - 2m_u m_d] g_A^8 \right\}$$

$$z = m_u / m_d, w = m_u / m_s$$

Pseudoscalar-nucleon coupling:

$$g_{\sigma NN} = \left(\sqrt{2}G_F\right)^{1/2} m_N \left\{ \left[\xi_u - \frac{\bar{m}}{m_u} \sum_q \xi_q \right] \Delta u + \left[\xi_d - \frac{\bar{m}}{m_d} \sum_q \xi_q \right] \Delta d + \left[\xi_s - \frac{\bar{m}}{m_s} \sum_q \xi_q \right] \Delta s \right\}$$

This is precisely the general axion-nucleon coupling. Note that physical axion is free of anomalous GG interaction

Light quark contributions to scalar-nucleon coupling vanish in chiral limit. By contrast, $g_{\sigma NN}$ receives significant light quark contributions even in chiral limit because pseuodscalar Higgs has admixture with π^0, η_8, η_0 which couple strongly with nucleon

Zero anomalous dimension for $A_{\mu}{}^3$, $A_{\mu}{}^8 \Rightarrow g_A{}^3 \& g_A{}^8$ can be determined from low-energy neutron & hyperon β decays.

SU(3) symmetry implies $g_A^8 = 3F-D = 0.585$ while $g_A^3 = F+D = 1.2701$

$$\int_0^1 g_1^p(x,Q^2) dx = C_{\rm NS}(Q^2) \left(\frac{1}{12}g_A^3 + \frac{1}{36}g_A^8\right) + \frac{1}{9}C_{\rm S}(Q^2)g_A^0(Q^2)$$

Using $g_A^{8}=0.585$, COMPASS ('07) & HERMES ('07) obtained $g_A^{0}(3 \text{ GeV}^2) = 0.35 \pm 0.03 \pm 0.05$ (COMPASS) $g_A^{0}(5 \text{ GeV}^2) = 0.330 \pm 0.0011 \pm 0.025 \pm 0.028$ (HERMES) $\Rightarrow \Delta u = 0.85$, $\Delta d = -0.42$, $\Delta s = -0.08$ at $Q^2 \sim 4 \text{ GeV}^2$

Semi-inclusive DIS data of COMPASS & HERMES show no evidence of large negative Δs : $\Delta s = -0.02\pm0.03$ by COMPASS

Also \triangle G/G is small from RHIC, COMPASS, HERMES

$$\Delta q_{GI}(Q^2) - \Delta q_{CI}(Q^2) = -\frac{1}{2\pi}\alpha_s(Q^2)\Delta G(Q^2)$$

Sea polarization should be small due to smallness of ∆G

Three lattice calculations in 2012 :

- **1.QCDSF** $\Delta s = -0.020 \pm 0.010 \pm 0.004$ at Q = 2.7 GeV
- **2.Engelhardt** $\Delta s = -0.031 \pm 0.017$ at Q = 2 GeV
- 3.Babich et al $\Delta s = G_A^s(0) = -0.019 \pm 0.017$ not renormalized yet

When SU(3) symmtry is broken, g_A^8 may be reduced. For example, $g_A^8 = 0.46 \pm 0.05$ in cloudy bag model Bass, Thomas ('10)

$$\int_0^1 g_1^p(x,Q^2) dx = C_{\rm NS}(Q^2) \left(\frac{1}{12}g_A^3 + \frac{1}{36}g_A^8\right) + \frac{1}{9}C_{\rm S}(Q^2)g_A^0(Q^2)$$

 $g_A^8 \downarrow \Rightarrow g_A^0 \uparrow \Rightarrow -\Delta s = 1/3 (g_A^8 - g_A^0) \downarrow$ For $g_A^8 = 0.46$, $\Delta s = -0.03$ sensitive to SU(3) breaking

 $(g_A^3)_n = - (g_A^3)_p \Rightarrow$ large isospin violation

N	$m_u E_u$	$m_d E_d$	$m_s E_s$	$\langle N \frac{\alpha_s}{8\pi} G \tilde{G} N \rangle$	Δu	Δd	Δs	$g_{\sigma NN}$
p	405	-787	-466	389	0.85	-0.42	-0.08	$-8.2 imes 10^{-3}$
n	-396	796	-75	-2	-0.42	0.85	-0.08	$1.3 imes 10^{-3}$
p	404	-788	-408	380	0.84	-0.44	-0.03	-7.8×10^{-3}
n	-397	795	-17	-11	-0.44	0.84	-0.03	$1.7 imes 10^{-3}$

Comparison with other works

$$f_{T_q} \equiv \frac{\langle N \mid m_q \overline{q} q \mid N \rangle}{m_N} = \frac{\sigma_q}{m_N}$$

	DarkSUSY	Ellis et al	Our
f _{Tu} (p)	0.023	0.020	0.017
f _{Tu} (n)	0.019	0.014	0.012
f _{Td} (p)	0.034	0.026	0.023
$f_{Td}^{(n)}$	0.041	0.036	0.033
f _{Ts} (p)	0.14	0.118	0.053
f _{Ts} (n)	0.14	0.118	0.053
∆u	0.77	0.78	0.84
Δd	-0.40	-0.48	-0.44
∆s	-0.12	-0.15	-0.03

Conclusions

■ Intensive lattice calculations of sigma terms of strange quark content in the nucleon ⇒ scalar-nucleon coupling dominated by heavy quarks

• A conflict between lattice and expt'l results for $\sigma_{\pi N}$?

■ Due to axial anomaly, additional assumption is needed to solve the nucleon matrix elements of pseudoscalar densities. We rely on chiral and large-N_c limits to derive the extra constraint. Chiral and $1/N_c$ corrections need to be studied.