

Direct CP Asymmetries in D decays

Fu-Sheng Yu (于福升)

Hsiang-nan Li and Cai-Dian Lu PRD86,036012(2012)

Institute of High Energy Physics, CAS

Oct 26, 2012

10th HFCPV@ Qingdao

Outline

> Motivation

Branching Ratios

Predict direct CP asymmetries

≻Summary

Evidence of CP Violation

• First evidence of CP violation in charm decays by LHCb, with 3.5 σ [PRL 2012]

$$\Delta A_{CP} \equiv A_{CP} (D^0 \to K^+ K^-) - A_{CP} (D^0 \to \pi^+ \pi^-) = (-0.82 \pm 0.25)\%$$

• World average from LHCb, CDF and Belle [ICHEP2012]

$$\Delta A_{CP} = (-0.74 \pm 0.15)\%$$

- Naively expected smaller in the SM $A_{CP}^{dir} \approx \frac{|V_{cb}^* V_{ub}|}{|V_{cs}^* V_{us}|} \frac{\alpha_s}{\pi} \approx 10^{-4}$
- Necessary to predict more precisely in the SM.

Dynamics of D decays

- To predict CPV
- Decay mechanism

to be well understood

Branching ratios

to be well explained

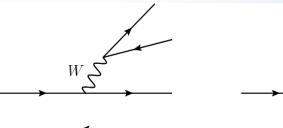
> A long-standing puzzle:

$$R = \frac{Br(D^0 \to K^+ K^-)}{Br(D^0 \to \pi^+ \pi^-)} \approx 2.8$$

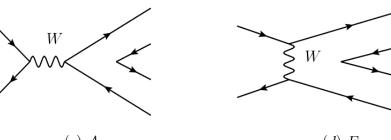
But *R*=1 in the SU(3) flavor symmetry

Large SU(3) Breaking Effects

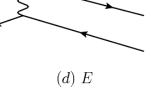
Guidelines



(a) T



(c) A



Topological amplitudes in factorization :

- Short-distance dynamics: Wilson coefficients
 - Long-distance dynamics:

hadronic matrix elements

 $m_c \sim 1.3 GeV$

➢Include large **SU(3) breaking** effects Parameterized by **Non-perturbative** quantities

Mode-dependent dynamics SU(3) breaking effects

Evolution of Wilson coefficients depending on energy release $M_{\eta'} \sim 1 \text{ GeV}$

• Masses of η' can not be neglected $M_D \sim 1.8 \text{ GeV}$

Glauber strong phase associated with pion in nonfactorizable amplitudes [H.n Li, S. Mishima, 2009]

- Pion: as a $q\overline{q}$ bound state, and as a massless Nambu-Goldstone boson?
- Multi-parton in pion => soft cloud => Glauber phase
- **Pion is unique**, distinguished from other final states

Branching ratios

Tree parameterization

$$O_{1} = (\bar{u}_{\alpha}q_{2\beta})_{V-A}(\bar{q}_{1\beta}c_{\alpha})_{V-A}$$
$$O_{2} = (\bar{u}_{\alpha}q_{2\alpha})_{V-A}(\bar{q}_{1\beta}c_{\beta})_{V-A}$$

Penguin contributions are negligible

Tree-level Amplitudes

$$\mathcal{A}(D^{0} \to \pi^{+}\pi^{-}) = \frac{G_{F}}{\sqrt{2}}\lambda_{d} \left(T^{\pi\pi} + E^{\pi\pi}\right)$$

$$= \frac{G_{F}}{\sqrt{2}}V_{cd}^{*}V_{ud} \left[a_{1}(\mu)(m_{D}^{2} - m_{\pi}^{2})f_{\pi}F_{0}^{D\pi}(m_{\pi}^{2}) + C_{2}(\mu)e^{i(\phi_{q}^{E} + 2S_{\pi})}\chi_{q}^{E}f_{D}m_{D}^{2}\right]$$

$$\mathcal{A}(D^0 \to K^+ K^-) = \frac{G_F}{\sqrt{2}} \lambda_s \left(T^{KK} + E^{KK} \right)$$
$$= \frac{G_F}{\sqrt{2}} V_{cs}^* V_{us} \left[a_1(\mu) (m_D^2 - m_K^2) f_K F_0^{DK}(m_K^2) + C_2(\mu) e^{i\phi_q^E} \chi_q^E f_D m_D^2 \frac{f_K^2}{f_\pi^2} \right]$$

=

Cabibbo-suppressed BRs : well agree with exp Our advantage : SU(3) breaking effects included

Modes	Br(FSI)	Br(diagram)	Br(pole)	Br(exp)	Br(this work)
$D^0 ightarrow \pi^+ \pi^-$	1.59	2.24 ± 0.10	2.2 ± 0.5	1.45 ± 0.05	1.43 📛
$D^0 \rightarrow K^+ K^-$	4.56	1.92 ± 0.08	3.0 ± 0.8	4.07 ± 0.10	4.19 📛
$D^0 \rightarrow K^0 \bar{K}^0$	0.93	0	0.3 ± 0.1	0.320 ± 0.038	0.36
$D^0 ightarrow \pi^0 \pi^0$	1.16	1.35 ± 0.05	0.8 ± 0.2	0.81 ± 0.05	0.57
$D^0 ightarrow \pi^0 \eta$	0.58	0.75 ± 0.02	1.1 ± 0.3	0.68 ± 0.07	0.94
$D^0 o \pi^0 \eta'$	1.7	0.74 ± 0.02	0.6 ± 0.2	0.91 ± 0.13	0.65
$D^0 ightarrow \eta \eta$	1.0	1.44 ± 0.08	1.3 ± 0.4	1.67 ± 0.18	1.48
$D^0 o \eta \eta'$	2.2	1.19 ± 0.07	1.1 ± 0.1	1.05 ± 0.26	1.54
$D^+ ightarrow \pi^+ \pi^0$	1.7	0.88 ± 0.10	1.0 ± 0.5	1.18 ± 0.07	0.89
$D^+ \rightarrow K^+ \bar{K}^0$	8.6	5.46 ± 0.53	8.4 ± 1.6	6.12 ± 0.22	5.95
$D^+ ightarrow \pi^+ \eta$	3.6	1.48 ± 0.26	1.6 ± 1.0	3.54 ± 0.21	3.39
$D^+ o \pi^+ \eta'$	7.9	3.70 ± 0.37	5.5 ± 0.8	4.68 ± 0.29	4.58
$D_S^+ \rightarrow \pi^0 K^+$	1.6	0.86 ± 0.09	0.5 ± 0.2	0.62 ± 0.23	0.67
$D_S^+ \rightarrow \pi^+ K^0$	4.3	2.73 ± 0.26	2.8 ± 0.6	2.52 ± 0.27	2.21
$D_S^+ \to K^+ \eta$	2.7	0.78 ± 0.09	0.8 ± 0.5	1.76 ± 0.36	1.00
$D_S^+ \to K^+ \eta'$	5.2	1.07 ± 0.17	1.4 ± 0.4	1.8 ± 0.5	1.92 ₉

Puzzle

• Revisited: R_{exp} = 2.8, R=1 in SU(3) flavor symmetry

Modes	Br(FSI)	Br(diagram)	Br(pole)	Br(exp)	Br(this work)
$D^0 \rightarrow \pi^+ \pi^-$	1.59	2.24 ± 0.10	2.2 ± 0.5	1.45 ± 0.05	1.43
$D^0 \longrightarrow K^+ K^-$	4.56	1.92 ± 0.08	3.0 ± 0.8	4.07 ± 0.10	4.19

Glauber phase associated with pions in nonfactorizable annihilation contribution

• dominate the difference between the two modes

$$T^{\pi\pi} = 2.73, \qquad E^{\pi\pi} = 0.82e^{-i142^{\circ}},$$

 $T^{KK} = 3.65, \qquad E^{KK} = 1.2e^{-i85^{\circ}},$

Improvement of BRs involving η'

- Mass-dependent Wilson coefficients
- η' involved predictions are improved

Modes	Br(FSI)	Br(diagram)	Br(pole)	Br(exp)	Br(this work)
$D^0 \to \overline{K}^0 \eta'$	1.51	$1.91{\pm}0.09$	1.9 ± 0.3	$1.90{\pm}0.11$	1.73
$D_S^+ \to \pi^+ \eta'$	5.89	$3.82{\pm}0.36$	4.6 ± 0.6	$3.95{\pm}0.34$	3.44
$D^0 \to \pi^0 \eta'$	1.7	$0.74{\pm}0.02$	0.6 ± 0.2	$0.91 {\pm} 0.13$	0.65
$D^0 \to \eta \eta'$	2.2	$1.19{\pm}0.07$	1.1 ± 0.1	$1.05{\pm}0.26$	1.54
$D^+ \to \pi^+ \eta'$	7.9	$3.70{\pm}0.37$	5.5 ± 0.8	$4.68 {\pm} 0.29$	4.58
$D_S^+ \to K^+ \eta'$	5.2	$1.07{\pm}0.17$	1.4 ± 0.4	$1.8 {\pm} 0.5$	1.92
$D^+ \to K^+ \eta'$		$0.91{\pm}0.17$	1.0 ± 0.1	$1.76{\pm}0.22$	1.14

Branching ratios well explained otherwise, some important dynamics may be missed

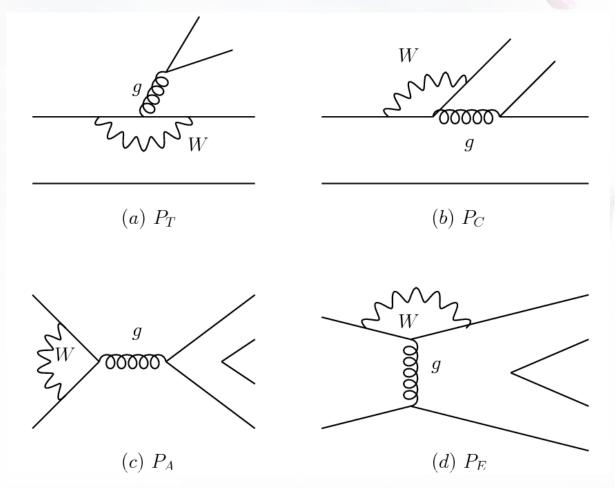
penguin parameterization & predict direct CP asymmetries

$$\Delta A_{CP} = -2r \sin\gamma \left(\frac{|\mathcal{P}^{KK}|}{|\mathcal{T}^{'KK}|} \sin\delta^{KK} + \frac{|\mathcal{P}^{\pi\pi}|}{|\mathcal{T}^{'\pi\pi}|} \sin\delta^{\pi\pi} \right),$$
$$r = \frac{|V_{cb}^* V_{ub}|}{|V_{cs}^* V_{us}|} \sim \lambda^4$$

12

Penguin topologies

All topological penguin diagrams for D->PP



Penguin parameterization

- Factorization
- Long-distance hadronic parameters, related to tree level, fixed by BRs
- Short-distance dynamics associated with penguin Wilson coefficients
- Then predict direct CP asymmetries

Penguin operators

$$O_{3} = \sum_{q'=u,d,s} (\bar{u}_{\alpha}c_{\alpha})_{V-A} (\bar{q}'_{\beta}q'_{\beta})_{V-A}, \quad (V-A)(V-A)$$

$$O_{4} = \sum_{q'=u,d,s} (\bar{u}_{\alpha}c_{\beta})_{V-A} (\bar{q}'_{\beta}q'_{\alpha})_{V-A}, \quad (V-A)(V-A)$$

$$O_{5} = \sum_{q'=u,d,s} (\bar{u}_{\alpha}c_{\alpha})_{V-A} (\bar{q}'_{\beta}q'_{\beta})_{V+A}, \quad (V-A)(V+A)$$

$$O_{6} = \sum_{q'=u,d,s} (\bar{u}_{\alpha}c_{\beta})_{V-A} (\bar{q}'_{\beta}q'_{\alpha})_{V+A}, \quad (S+P)(S-P)$$

Hadronic Parameterization: relate penguin to tree

> At tree level, operators are all (V-A)(V-A)

For penguin hadronic matrix elements

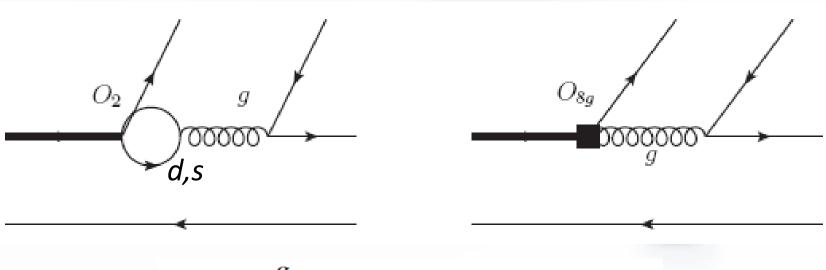
(V-A)(V-A)> are the same as tree level

(V-A)(V+A)> related to tree by a sign, since either V or A contributes to P->PP

• <(S-P)(S+P)> are either factorizable and related to tree by chiral enhancement , or neglected by power suppression

Quark loops & Magnetic penguin

 absorbed into short-distance Wilson coefficients



$$O_{8g} = \frac{g}{8\pi^2} m_c \bar{u} \sigma_{\mu\nu} (1 + \gamma_5) T^a G^{a\mu\nu} c,$$

$$\mathcal{A}(D^{0} \to \pi^{+}\pi^{-})$$

$$= \frac{G_{F}}{\sqrt{2}} \Big[\lambda_{d} (T+E) - \lambda_{b} \left(P_{C} + 2P_{A}^{d} + P_{E}^{d} \right) \Big],$$

$$= \frac{G_{F}}{\sqrt{2}} \Big\{ V_{cd}^{*} V_{ud} \Big[a_{1}(\mu)(m_{D}^{2} - m_{\pi}^{2}) f_{\pi} F_{0}^{D\pi}(m_{\pi}^{2}) + C_{2}(\mu) e^{i(\phi_{q}^{E} + 2S_{\pi})} \chi_{q}^{E} f_{D} m_{D}^{2} \Big]$$

$$-V_{cb}^{*} V_{ub} \Big[a_{P_{C}}(\mu)(m_{D}^{2} - m_{\pi}^{2}) f_{\pi} F_{0}^{D\pi}(m_{\pi}^{2}) + 2a_{P_{A}}(\mu) e^{i(\phi_{q}^{A} + 2S_{\pi})} \chi_{q}^{A} f_{D} m_{D}^{2}$$

$$+C_{3}(\mu) e^{i(\phi_{q}^{E} + 2S_{\pi})} \chi_{q}^{E} f_{D} m_{D}^{2} + 2a_{6}'(\mu) g_{S} f_{D} \frac{m_{D}^{2}}{m_{c}} \sum_{f_{0}} B_{f_{0}}(m_{D}^{2}) m_{f_{0}} \bar{f}_{f_{0}} \Big] \Big\},$$

$$+C_{3}(\mu) e^{i(\phi_{q}^{E} + 2S_{\pi})} \chi_{q}^{E} f_{D} m_{D}^{2} + 2a_{6}'(\mu) g_{S} f_{D} \frac{m_{D}^{2}}{m_{c}} \sum_{f_{0}} B_{f_{0}}(m_{D}^{2}) m_{f_{0}} \bar{f}_{f_{0}} \Big] \Big\},$$

$$e^{i(S+P)(S-P)} e^{i(S+P)(S-P)} e^{$$

Predictions of CPV

Penguin contributions are formulated without any new free parameters

- Either related to tree level (fixed by BRs),
- Or factorizable and calculable,
- Or power suppressed
- Unambiguous predictions of direct CP asymmetries

Dominate contribution: <(S+P)(S-P)> in Pc and PE by chiral enhancement

Predictions of Direct CPV (10⁻³)

Modes	$A_{CP}(FSI)$	A _{CP} (diagram)	A_{CP}^{tree}	$A_{CP}^{\rm tot}$
$D^0 \rightarrow \pi^+ \pi^-$	0.02 ± 0.01	0.86	0	0.58 📛
$D^0 \longrightarrow K^+ K^-$	0.13 ± 0.8	-0.48	0	-0.42 🖛
$D^0 \rightarrow \pi^0 \pi^0$	-0.54 ± 0.31	0.85	0	0.05
$D^0 \rightarrow K^0 \bar{K}^0$	-0.28 ± 0.16	0	1.11	1.38
$D^0 o \pi^0 \eta$	1.43 ± 0.83	-0.16	-0.33	-0.29
$D^0 o \pi^0 \eta'$	-0.98 ± 0.47	-0.01	0.53	1.53
$D^0 o \eta \eta$	0.50 ± 0.29	-0.71	0.29	0.18
$D^0 o \eta \eta^\prime$	0.28 ± 0.16	0.25	-0.30	-0.94
$D^+ \rightarrow \pi^+ \pi^0$		0	0	0
$D^+ \to K^+ \bar{K}^0$	-0.51 ± 0.30	-0.38	-0.13	-0.93
$D^+ o \pi^+ \eta$		-0.65	-0.54	-0.26
$D^+ ightarrow \pi^+ \eta'$		0.41	0.38	1.18
$D_S^+ \rightarrow \pi^0 K^+$		0.88	0.32	0.39
$D_S^+ \to \pi^+ K^0$		0.52	0.13	0.84
$D_S^+ \to K^+ \eta$		-0.19	0.80	0.70
$D_S^+ \to K^+ \eta'$		-0.41	-0.45	-1.60

Result of CP asymmetries

The prediction of difference of CPV in D->KK and D-> pipi in the SM

$$\Delta A_{CP}^{SM} = -1.00 \times 10^{-3}$$

- Enhanced from naively expectation in SM 10⁴-4
- The same sign as, but one order of magnitude smaller than experiment $\Delta A_{CP}^{exp} = (-0.74 \pm 0.15)\%$

► Uncertainty mainly from $\langle S+P \rangle \langle S-P \rangle >$ in P_E $\Delta A_{CP} = (-0.57 \sim -1.87) \times 10^{-3}$

If CPV remains the current central value (~1 %), may be a signal of new physics

Summary (I)

Propose a theoretical framework for D->PP decays based on factorization

Explain branching ratios at tree level

Unambiguous predictions of direct CP asymmetries in *D->PP* in the SM

 $\Delta A_{CP} = -1.00 \times 10^{-3}$

> Much smaller than current measurements

Summary (II)

- Our framework is of predictive power
 - Factorization
 - Wilson coefficients and hadronic matrix elements
- ► In progress, *D->PV*, *VV*
- \succ New-physics effects on ΔAcp
 - combining NP Wilson coefficients
 - with hadronic matrix elements determined in this work.

THANK YOU!

Back-ups

Parameters by global fit

 $\Lambda = 0.56 \text{ GeV}, \quad \chi_{nf} = -0.59, \quad \chi_q^E = 0.11,$ $\chi_s^E = 0.18, \quad \chi_q^A = 0.12, \quad \chi_s^A = 0.17,$ $S_{\pi} = -0.50, \quad \phi = -0.62, \quad \phi_q^E = 4.80,$ $\phi_s^E = 4.23, \quad \phi_q^A = 4.06, \quad \phi_s^A = 3.48,$

Numerical results (I)

- $a_1(\pi\pi) = 1.09,$ $a_2(\pi\pi) = 0.81e^{i147.8^\circ},$
- $a_1(KK) = 1.10, \qquad a_2(KK) = 0.83e^{i148.2^\circ},$

 $C_2(\pi\pi) = 1.26, \qquad C_2(KK) = 1.27,$

$$a_1(\pi \eta') = 1.12$$
 and $a_2(\pi \eta') = 0.89e^{i149.6^\circ}$
 $C_2(\pi \eta') = 1.32$

Numerical Results (II)

 $T^{\pi\pi} = 2.73, \qquad E^{\pi\pi} = 0.82e^{-i142^{\circ}},$ $T^{KK} = 3.65, \qquad E^{KK} = 1.2e^{-i85^{\circ}},$

 $P_E^{\pi\pi} = 0.81 e^{i111^\circ},$ $P_C^{\pi\pi} = 0.87 e^{i134^\circ},$ $P_A^{\pi\pi} = 0.25 e^{-i43^\circ}, \qquad P_C^{KK} = 1.21 e^{i135^\circ},$ $P_E^{KK} = 0.87 e^{i111^\circ}, \qquad P_A^{KK} = 0.45 e^{-i5^\circ},$ $\mathcal{P}^{\pi\pi} = 1.40 e^{i121^\circ}.$ $T^{\pi\pi} = 2.14 e^{-i14^\circ},$ $\mathcal{P}^{\pi\pi}$ $\frac{1}{\mathcal{T}^{\prime\pi\pi}} = 0.66e^{i134^\circ},$ $T^{KK} = 3.94 e^{-i18^\circ},$ \mathcal{P}^{KK} $\frac{1}{\mathcal{T}^{'KK}} = 0.45 e^{i131^\circ}.$ $\mathcal{P}^{KK} = 1.79 e^{i114^\circ},$

Topological diagrams for BRs

- According to weak interactions and flavor flows
- Include all strong interaction effects, involving FSI
- This is a complete set
- Topological diagrammatic approach was studied in the flavor SU(3) symmetry limit

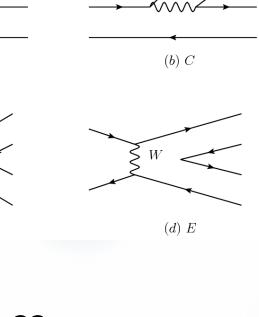
How SU(3) breaking ??

 $W \gtrsim$

(a) T

(c) A

W

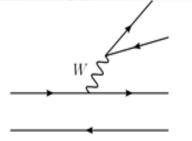


Nambu-Goldstone bosons

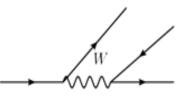
- Pion : massless Goldstone boson, and *qq* bound state?
- Massless boson => huge spacetime
 - => large separation between qqbar
 - => high mass due to confinement => contradiction!
- Reconciliation : Tight bound qqbar, but multi-parton => soft cloud (Lepage, Brodsky 79; Nussinov, Shrock 08; Duraisamy, Kagan 08)
- Glauber phase corresponds to soft cloud [H.n Li, S. Mishima, 09]
- Pion is unique
- SU(3) breaking effects: distinguish pions from other final states

Emission Amplitudes

- Color-favored Tree (T)
- Color-suppressed (C)



(a) T

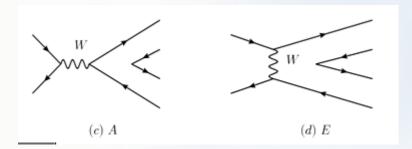


(b) C

$$\langle P_1 P_2 | \mathcal{H}_{eff} | D \rangle_{T,C} = \frac{G_F}{\sqrt{2}} V_{CKM} a_{1,2}(\mu) f_{P_2}(m_D^2 - m_{P_1}^2) F_0^{DP_1}(m_{P_2}^2)$$

$$a_{1}(\mu) = C_{2}(\mu) + \frac{C_{1}(\mu)}{N_{c}}, \qquad \text{Non-factorizable contribution}$$
$$a_{2}(\mu) = C_{1}(\mu) + C_{2}(\mu) \left[\frac{1}{N_{c}} + \chi_{nf} e^{i\phi}\right], \qquad \text{Relative phase}$$
by FSI

$$\mu = \sqrt{\Lambda m_D (1 - r_2^2)}, \quad r_2 = m_{P_2}^2 / m_D^2$$



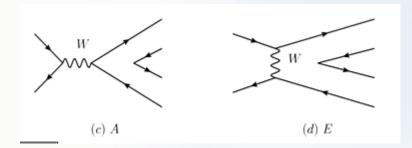
W-annihilation (A) W-exchange (E)

$$\langle P_1 P_2 | \mathcal{H}_{\text{eff}} | D \rangle_{E,A} = \frac{G_F}{\sqrt{2}} V_{\text{CKM}} b_{q,s}^{E,A}(\mu) f_D m_D^2 \left(\frac{f_{P_1} f_{P_2}}{f_\pi^2} \right)$$

Dominated by non-factorizable contribution



contribution neglected by helicity suppression



W-annihilation (A) W-exchange (E)

$$\langle P_1 P_2 | \mathcal{H}_{eff} | D \rangle_{E,A} = \frac{G_F}{\sqrt{2}} V_{CKM} b_{q,s}^{E,A}(\mu) f_D m_D^2 \left(\frac{f_{P_1} f_{P_2}}{f_\pi^2} \right)$$

Dominated by **non-factorizable** contribution

$$b_{q,s}^{A}(\mu) = C_{1}(\mu)\chi_{q,s}^{A}e^{i\phi_{q,s}^{A}}$$

$$b_{q,s}^{E}(\mu) = C_{2}(\mu)\chi_{q,s}^{E}e^{i\phi_{q,s}^{E}}$$
SU(3)
breaking
effects

large $Br(D^0 \to K^0 \overline{K^0})$

$$\mu = \sqrt{\Lambda m_D (1 - r_1^2)(1 - r_2^2)}$$

 $r_{1,2} = m_{P_1,P_2}/m_D$

Emission penguins

$$P_{T} = a_{3}(\mu) \langle P_{2} | (\bar{q}q)_{V-A} | 0 \rangle \langle P_{1} | (\bar{u}c)_{V-A} | D \rangle$$

+ $a_{5}(\mu) \langle P_{2} | (\bar{q}q)_{V+A} | 0 \rangle \langle P_{1} | (\bar{u}c)_{V-A} | D \rangle$,
= $[a_{3}(\mu) - a_{5}(\mu)] f_{P_{2}}(m_{D}^{2} - m_{P_{1}}^{2}) F_{0}^{DP_{1}}(m_{P_{2}}^{2})$,
 $a_{3}(\mu) = C_{3}(\mu) + \frac{C_{4}(\mu)}{N_{c}}, \qquad a_{5}(\mu) = C_{5}(\mu) + \frac{C_{6}(\mu)}{N_{c}}$

 $a_4(\mu) = C_4(\mu) + C_3(\mu) \left[\frac{1}{N_c} + \chi_{nf} e^{i\phi} \right],$ $a_6(\mu) = C_6(\mu) + C_5(\mu) \left[\frac{1}{N_c} + \chi_{nf} e^{i\phi} \right].$

$$\begin{split} P_{C} &= a_{4}(\mu) \langle P_{2} | (\bar{u}q)_{V-A} | 0 \rangle \langle P_{1} | (\bar{q}c)_{V-A} | D \rangle \\ &- 2a_{6}(\mu) \langle P_{2} | (\bar{u}q)_{S+P} | 0 \rangle \langle P_{1} | (\bar{q}c)_{S-P} | D \rangle \\ &= [a_{4}(\mu) + a_{6}(\mu)r_{\chi}] f_{P_{2}}(m_{D}^{2} - m_{P_{1}}^{2}) F_{0}^{DP_{1}}(m_{P_{2}}^{2}), \end{split}$$

$$r_{\chi} = \frac{2m_{P_2}^2}{m_c(m_u + m_q)},$$

Annihilation Penguins

$$P_{A} = [C_{4}(\mu) + C_{6}(\mu)]\chi^{A}_{q,s}e^{i\phi^{A}_{q,s}}f_{D}m^{2}_{D}\left(\frac{f_{P_{1}}f_{P_{2}}}{f^{2}_{\pi}}\right).$$
 Non-factorizable

Resonances dominated

$$B_{S}(q^{2}) = \frac{1}{q^{2} - m_{S}^{2} + im_{S}\Gamma_{S}(q^{2})}.$$

Quark loops

$$\begin{split} C_{3,5}(\mu) &\to C_{3,5}(\mu) - \frac{\alpha_s(\mu)}{8\pi N_c} \sum_{q=d,s} \frac{\lambda_q}{\lambda_b} C^{(q)}(\mu, \langle l^2 \rangle), \\ C_{4,6}(\mu) &\to C_{4,6}(\mu) + \frac{\alpha_s(\mu)}{8\pi} \sum_{q=d,s} \frac{\lambda_q}{\lambda_b} C^{(q)}(\mu, \langle l^2 \rangle), \\ C^{(q)}(\mu, \langle l^2 \rangle) &= \left[G^{(q)}(\mu, \langle l^2 \rangle) - \frac{2}{3} \right] C_2(\mu), \\ G^{(q)}(\mu, \langle l^2 \rangle) &= -4 \int_0^1 dx x (1-x) \ln \frac{m_q^2 - x(1-x) \langle l^2 \rangle}{\mu^2}. \end{split}$$

• Magnetic penguins $C_{3,5}(\mu) \rightarrow C_{3,5}(\mu) + \frac{\alpha_s(\mu)}{8\pi N_c} \frac{2m_c^2}{\langle l^2 \rangle} C_{8g}^{\text{eff}}(\mu),$ $C_{4,6}(\mu) \rightarrow C_{4,6}(\mu) - \frac{\alpha_s(\mu)}{8\pi} \frac{2m_c^2}{\langle l^2 \rangle} C_{8g}^{\text{eff}}(\mu),$

Cabibbo-favored BRs well consistent with data

Modes	Br(FSI)	Br(diagram)	Br(pole)	Br(exp)	Br(this work)
$D^0 \rightarrow \pi^0 \bar{K}^0$	1.35	2.36 ± 0.08	2.4 ± 0.7	2.38 ± 0.09	2.41
$D^0 \rightarrow \pi^+ K^-$	4.03	3.91 ± 0.17	3.9 ± 1.0	3.891 ± 0.077	3.70
$D^0 \rightarrow \bar{K}^0 \eta$	0.80	0.98 ± 0.05	0.8 ± 0.2	0.96 ± 0.06	1.00
$D^0 \rightarrow \bar{K}^0 \eta'$	1.51	1.91 ± 0.09	1.9 ± 0.3	1.90 ± 0.11	1.73
$D^+ ightarrow \pi^+ ar{K}^0$	2.51	3.08 ± 0.36	3.1 ± 2.0	3.074 ± 0.096	3.22
$D_S^+ \rightarrow K^+ \bar{K}^0$	4.79	2.97 ± 0.32	3.0 ± 0.9	2.98 ± 0.08	3.00
$D_S^+ o \pi^+ \eta$	1.33	1.82 ± 0.32	1.9 ± 0.5	1.84 ± 0.15	1.65
$D_S^+ ightarrow \pi^+ \eta'$	5.89	3.82 ± 0.36	4.6 ± 0.6	3.95 ± 0.34	3.44
$D_S^+ \to \pi^+ \pi^0$		0	0	< 0.06	0

Doubly Cabibbo-Suppressed BRs

Modes	Br(diagram)	Br(pole)	Br(exp)	Br(this work)
$D^0 \rightarrow \pi^0 K^0$	0.67 ± 0.02	0.6 ± 0.2		0.69
$D^0 \rightarrow \pi^- K^+$	1.12 ± 0.05	1.6 ± 0.4	1.48 ± 0.07	1.67
$D^0 \rightarrow K^0 \eta$	0.28 ± 0.02	0.22 ± 0.05		0.29
$D^0 \rightarrow K^0 \eta'$	0.55 ± 0.03	0.5 ± 0.1		0.50
$D^+ \rightarrow \pi^+ K^0$	1.98 ± 0.22	1.7 ± 0.5		2.38
$D^+ \rightarrow \pi^0 K^+$	1.59 ± 0.15	2.2 ± 0.4	1.72 ± 0.19	1.97
$D^+ \to K^+ \eta$	0.98 ± 0.04	1.2 ± 0.2	1.08 ± 0.17^{a}	0.66
$D^+ \to K^+ \eta'$	0.91 ± 0.17	1.0 ± 0.1	$1.76 \pm 0.22^{\rm b}$	1.14
$D_S^+ \to K^+ K^0$	0.38 ± 0.04	0.7 ± 0.4		0.63