Status of Tau and QCD Physics at BESIII

Xia Ligang On behalf of BESIII Collaboration

Outline

- Tau Mass Measurement
 - Motivation
 - Data Analysis and Preliminary Result
- R-value and QCD Physics
 - Motivation
 - Present Status
- Summary

Tau Mass Measurement

Elementary parameter in SM (PDG2012)

- > $M_e = 0.510998910 \pm 0.00000013$ (2.6×10⁻⁸)
- \blacktriangleright M_µ=105.658367±0.000004 (3.8×10⁻⁸)
- > $M_{\tau} = 1776.82 \pm 0.16$

(9.0×10⁻⁵)

Yoshio Koide (1981) equality testing

$$Q = \frac{m_e + m_\mu + m_\tau}{\left(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau}\right)^2} = \frac{2}{3} \left(0.6666659(10)\right)$$

Lepton universality testing

$$\left(\frac{g_{\tau}}{g_{\mu}}\right)^{2} = \frac{\tau_{\mu}}{\tau_{\tau}} \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{B(\tau \to e \, v_{e} v_{\tau})}{B(\mu \to e \, v_{e} v_{\mu})} (1 + \Delta_{e})$$
10-25
$$\frac{g_{\tau}}{g_{\mu}} = \frac{\pi_{\mu}}{\sigma_{\tau}} \left(\frac{m_{\mu}}{m_{\tau}}\right)^{5} \frac{B(\tau \to e \, v_{e} v_{\tau})}{B(\mu \to e \, v_{e} v_{\mu})} (1 + \Delta_{e})$$

2012-10-25

Tau Mass Measurement

PDG2012: 1776.82 ± 0.16 MeV

Pseudomass Method
 Threshold Scan Method

Our Goal: Δm_τ< 0.1 MeV

$$m_{\tau}^{2} = p_{\tau}^{2} = \left(p_{h} + p_{\nu}\right)^{2}$$
$$\geq m_{h}^{2} + 2\left(E_{h} - \left|\vec{p}_{h}\right|\right)\left(E_{\tau} - E_{h}\right)$$

....

Data Analysis

Scan point i

Scan point i+1

Scan point i

Scan point i+1

24.5

	Scan point	Run number	$E_{e^-}(MeV)$	E_{e^+} (MeV)	E_{cm} (MeV)	
au	1	24983 - 25015	1771.558 ± 0.067	1771.069 ± 0.053	3542.413 ± 0.085	(
	2	25016 - 25094	1777.307 ± 0.047	1776.730 ± 0.046	3553.822 ± 0.075	$E^{\sqrt{S}} \sim 2E^{-1}$
	3	25100 - 25141	1780.926 ± 0.055	1780.431 ± 0.065	3561.142 ± 0.085	$E_{cm} \approx 2E_{beam} 1$
	4	25143 - 25243	1800.526 ± 0.044	1799.878 ± 0.044	3600.186 ± 0.062	
	1	24937-24937	1544.542 ± 0.135	1544.312 ± 0.217	3088.667 ± 0.256	
	2	24938 - 24942	1547.917 ± 0.099	1547.548 ± 0.106	3095.278 ± 0.145	
	3	24943- 24949	1548.692 ± 0.103	1548.171 ± 0.086	3096.676 ± 0.135	
J/ψ	4	24959 - 24966	1549.079 ± 0.109	1548.714 ± 0.075	3097.606 ± 0.133	
	5	24967 - 24971	1549.451 ± 0.081	1549.014 ± 0.114	3098.278 ± 0.140	
	6	24972 - 24975	1549.566 ± 0.101	1549.438 ± 0.083	3098.817 ± 0.131	
	7	24976 - 24978	1552.186 ± 0.088	1551.936 ± 0.107	3103.934 ± 0.139	
	1	25245 - 25251	1838.183 ± 0.256	1837.940 ± 0.157	3675.901 ± 0.300	
	2	25252 - 25262	1842.177 ± 0.090	1841.279 ± 0.220	3683.653 ± 0.303	
	3	25264 - 25270	1842.755 ± 0.153	1842.489 ± 0.087	3685.113 ± 0.230	
ψ'	4	25271 - 25295	1843.402 ± 0.075	1842.893 ± 0.110	3686.337 ± 0.189	
	5	25299 - 25314	1844.787 ± 0.125	1844.137 ± 0.107	3688.819 ± 0.226	
	6	25315 - 25322	1846.832 ± 0.138	1846.487 ± 0.108	3693.515 ± 0.245	
	7	25325 - 25337	1844.130 ± 0.091	1843.396 ± 0.088	3687.573 ± 0.158	

Bhabha $e^+e^- \rightarrow e^+e^-$ Di-gamma $e^+e^- \rightarrow \gamma \gamma$

	Scan point	N_2^{obs}	N_1^{obs}	$L_{bhabha} \ (\mathrm{nb}^{-1})$	N^{obs}	$L_{digamma} \ (\mathrm{nb}^{-1})$
	1	1575827	58018	4502.89	74240	4252.17
au	2	2043538	75371	5877.14	96570	5566.82
	3	1413321	52432	4082.30	67192	3889.29
	4	3411037	126081	10068.29	161482	9553.18
	1	38143	1393	81.79	1804	78.52
	2	114205	7191	239.19	5016	219.26
	3	137995	21744	260.07	5557	243.13
J/ψ	4	109972	17947	206.00	4718	206.55
	5	116221	15593	225.34	5104	223.53
	6	106130	10079	215.17	4950	216.87
	7	150860	6618	324.23	7218	317.31
	1	269201	9878	830.58	12763	787.04
	2	284362	10995	879.30	13291	823.10
	3	285762	12775	878.75	13432	832.47
ψ'	4	414291	20998	1266.84	19097	1184.34
	5	565681	27641	1734.27	26761	1660.77
	6	265322	11889	817.48	12366	767.97
	7	501530	19215	1559.59	23624	1470.75

Event Selection

Partial information, not the full list !

PID	p (GeV/c)	EMC	TOF	MUC	other
e	p_{min}	0.8 < E/p < 1.05	$ \Delta tof(e) < 0.2$		
			0 < tof < 4.5		
μ	p_{min}	E/p < 0.7	$ \Delta tof(\mu) < 0.2$	$(depth > 80 \times p$ -50 or $depth > 40)$	
		0.1< <i>E</i> <0.3		and $numhits > 1$	
π	p_{min}	E/p < 0.6	$ \Delta tof(\pi) < 0.2$		not μ
			0 < tof < 4.5		
K	p_{min}	E/p < 0.6	$ \Delta tof(K) < 0.2$		not μ
			0 < tof < 4.5		

$$PTEM = \frac{P_T}{E_{miss}^{max}} = \frac{(\vec{P_1} + \vec{P_2})_T}{W - |\vec{P_1}| - |\vec{P_2}|}$$

No good photon: $N_v = 0$ Good photon: 1) 0<TDC<14, (unit: 50ns) 2) $|\cos\theta| < 0.8$, E>25MeV 3) 0.84<| cosθ |<0.92, E>50MeV 4) $\theta vc > 20$

The detection efficiency for different final states at different scan points

scan noint				Effici	iency	(%)			
scan point	ee	$e\mu$	eh	$\mu\mu$	μh	hh	$e\rho$	$\mu \rho$	πho
2	17.1	21.8	32.4	14.2	15.3	25.6	9.9	5.5	9.1
3	17.6	23.2	34.9	14.0	16.9	29.3	10.4	6.1	8.9
4	17.8	23.1	36.2	13.9	17.7	34.5	10.8	5.3	12.8

6

The number of observed events and that of normalized MC samples are consistent within errors.

final state	1		2	2		3		4	to	otal
final state	Data	MC	Data	MC	Data	MC	Data	MC	Data	MC
ee	0	0	4	3.7	13	12.2	84	76.1	101	91.9
$e\mu$	0	0	8	9.2	35	31.3	168	192.7	211	233.1
$e\pi$	0	0	8	8.6	33	29.6	202	184.5	243	222.7
ek	0	0	0	0.5	2	1.8	10	16.9	18	19.3
$\mu\mu$	0	0	2	2.9	8	p2	49	56.3	59	68.4
$\mu\pi$	0	0	4	3.9	11	4.0	89	86.7	104	104.7
μk	0	0	Ø	0.2	3	0.8	7	9.0	10	10.1
$\pi\pi$	0	0	2	1.0	5	7.7	57	54.0	63	63.8
πk	Ø	0	51	0.3	0	0.8	10	8.2	11	9.3
kk	0	0	0	0.0	1	0.1	1	0.3	2	0.4
$e\rho$	0	0	3	6.1	19	20.6	142	132.0	164	158.7
μho	0	0	8	3.3	18	11.8	52	62.3	68	78.5
$\pi \rho$	0	0	5	3.4	15	10.8	97	96.0	117	110.2
Total	0	0	44	44.2	153	150.8	974	976.1	1171	1171.1

Total consistency is fairly well!

τ mass measurement

R-value and QCD Physics

Motivations

- R-value measurement;
- Hadronic contribution to
 - QED running coupling constant $\alpha_{QED}(M_Z)$
 - Anomalous magnet moment of the muon a_{μ}
- Resonance structures in open charm region;
- Strong coupling constant α_s determination;
- Baryon form factor (p, n, Λ ...);
- Charm quark mass m_c determination;
- X, Y, Z particles and other possible new resonances
- Physics with D_s, Charmed baryons,

R Measurements at **BESII**

Proton Form Factor: $e^+e^- \rightarrow p^+p^ \frac{d\sigma}{d\Omega} = \frac{\alpha^2\beta}{4s} C[|G_M(s)|^2(1+\cos^2\theta) + \frac{1}{\tau}|G_E(s)|^2\sin^2\theta]$ $\frac{4\pi\alpha^2\beta}{4s} (s^2)^2 C[|G_M(s)|^2(1+\cos^2\theta) + \frac{1}{\tau}|G_E(s)|^2)]$

$$\sigma_0 = \frac{4\pi \alpha^2 \beta}{3s} (1 + \frac{2M^2}{s}) |G(s)|^2$$

Most measurements assume G_E=G_M.

Only 2 experiments measured $|G_E/G_M|$, but apparently disagree with each other.

Works ongoing

$$R = \frac{1}{\sigma_{\mu+\mu-}} \cdot \frac{N_{had} - N_{bg}}{L \cdot \varepsilon_{had} \cdot (1 + \delta)}$$

 N_{had} , N_{bg} : observed hadronic events, backgrounds

L: integrated luminosity

 ϵ_{had} : detection efficiency for N_{had}

 δ : radiative correction factor

- Luminosity measurement
- J/ψ line shape fitting
- e⁺e⁻→ppbar cross section
- $e^+e^- \rightarrow \pi^+\pi^-$ cross section

Summary

- BESIII has measured Tau mass with a precision better than PDG value. Preliminary results is under internal review. And the future goal is less than 0.1 MeV/c² with more data taken.
- R measurement and QCD studies with data below 3.7 GeV are in progress, and R scan in the high energy region is expected.

Thank you!

• BACK UP

Definition of R

• At higher order

$$egin{array}{rcl} R &=& 3 \; K_{QCD} \sum_{q} Q_{q}^{2} \; , \ K_{QCD} &=& 1 + rac{lpha_{ extsf{S}}(\mu^{2})}{\pi} + \sum_{n \geq 2} C_{n} \left(rac{s}{\mu^{2}}
ight) \; \left(rac{lpha_{ extsf{S}}(\mu^{2})}{\pi}
ight)^{n} \end{array}$$

- R is one of the most fundamental quantities in particle physics that directly reflect the flavor and color of the quarks.
- **Directly test** of quark model and QCD, and **discover** new particles.

Pseudomass Method

$$m_{\tau}^{2} = p_{\tau}^{2} = (p_{h} + p_{v})^{2}$$

= $p_{h}^{2} + p_{v}^{2} + 2p_{h} \cdot p_{v}$
= $m_{h}^{2} + 2(E_{h}E_{v} - \vec{p}_{h} \cdot \vec{p}_{v})$
 $\geq m_{h}^{2} + 2(E_{h}E_{v} - |\vec{p}_{h}||\vec{p}_{v}|)$
= $m_{h}^{2} + 2(E_{h} - |\vec{p}_{h}|)(E_{\tau} - E_{h})$

CM energy setting

Fragmentation Function

Fragmentation function $D_q^h(z)$: probability that hadron h is found in the debris of a parton (quark/gluon) carrying a fraction $z = 2E_h/Vs$ of parton's energy.

LO:
$$d\sigma(e^+e^- \rightarrow h+X)/dz = \sum_q \sigma(e^+e^- \rightarrow q\underline{q})(D^h_q(z) + D^h_{\underline{q}}(z))$$

No good data at $\sqrt{s} < 10 \text{ GeV}$

- DASP: π^{\pm} at 3.6GeV; average stat. uncertainty 18%
- DASP: k[±] at 3.6GeV; average stat. uncertainty 55%

Frangmenation Function

BESIII can provide e⁺e⁻ data in 2-5 GeV

R values and QCD

- R, $\alpha_{\rm s}$ and charm quark mass
- Quark fragmentation functions
- Form factor of baryon (p, Λ , ...)
- MLLA/LPHD predictions
 - ξ distribution (ξ =-ln(2p/ \sqrt{s}), parameter Λ & KLPHD
 - Multiplicity, 2nd binomial moment R₂

R & QCD: analyses

$$\succ R = \frac{1}{\sigma_{\mu+\mu-}} \cdot \frac{N_{had} - N_{bg}}{L \cdot \varepsilon_{had} \cdot (1 + \delta)}$$

N_{had}, N_{bg}: observed hadronic events, backgrounds

- L: integrated luminosity
- ϵ_{had} : detection efficiency for N_{had}
- δ : radiative correction factor
 - $> J/\psi$ line shape fitting
 - > QCD studies (so far):
 - ppbar cross section and form factor
 - $\pi^+\pi^-$ cross section and form factor
 - Fragmentation function

More on Form Factor

Puzzles related to proton timelike FF:

- Proton FF factor 2 higher in Timelike region compared to Spacelike Region (pQCD precicts them to be equal)

- Neutron FF \sim factor 2 higher than proton FF \rightarrow measurement of Neutron FF at BES-III very important

- Steps at 2.2 and 2.9 GeV

(see slide 26)

- Threshold enhancement

Motivations

- Hadronic contribution to
 - QED running coupling constant $\alpha_{\text{QED}}(M_Z)$

$$\Delta \alpha_{had}^{(5)}(s) = -\frac{\alpha s}{3\pi} \text{Re} \int_{4m_{\pi}^2}^{\infty} ds' \frac{R(s')}{s' - s - i\varepsilon}$$

– Anomalous magenet moment of the muon $a_{\mu_{\!\!\!\!\!\!}}$ or $(g_{\mu}\!\!-\!\!2)$

$$a_{\mu}^{had} = \left(\frac{\alpha m_{\mu}}{3\pi}\right)^2 \int_{4m_{\pi}^2}^{\infty} ds' \frac{\ddot{K}(s')}{s'^2} R(s')$$

- Resonance structure and component in open charm region;
- Strong coupling constant α_s determination;
- Proton form factor;
- Charm quark mass m_c determination;
- X, Y, Z particles and other possible new resonances
- Physics with D_s, Charmed baryons,

Resonances in the Open Charm Region

- All possible two-body decays of $\psi(3770), \psi(4040), \psi(4160), \psi(4415)$ are included in the fit.
- Interference, phase and energydependent width must be taken into account in the fit.

```
\begin{split} \psi(3770) &\Rightarrow D\bar{D}; \\ \psi(4040) &\Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s; \\ \psi(4160) &\Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s, D_s\bar{D}_s^*; \\ \psi(4415) &\Rightarrow D\bar{D}, D^*\bar{D}^*, D\bar{D}^*, \bar{D}D^*, D_s\bar{D}_s, D_s\bar{D}_s^*, D_s^*\bar{D}_s^*. \end{split}
```

We need high statistic data taken at each peak position to measure the resonance parameters by knowing the cross section of their exclusive decay channels.

- Non-resonant contribution
- Open charm threshold 2012-10-25 第十届重味物理会议 Xia L.G.

Parameters of the Broad Resonances

Parameters (M, Γ_{tot} , Γ_{ee}) of the J^{PC} = 1⁻⁻ conventional charmonia $\psi(3770)$, $\psi(4040)$, $\psi(4160)$, $\psi(4415)$ remain quite uncertain and model dependent:

	M, MeV	$\Gamma_{\rm tot}$, MeV	$\Gamma_{\rm ee}$, keV	δ, deg	
ψ(3770)	3772.92 ± 0.35	27.3 ± 1.0	0.265 ± 0.018		PDG09
	3772.0 ± 1.9	30.4 ± 8.5	0.22 ± 0.05	0	BES08
ψ(4040)	4039 ± 1	80 ± 10	0.86 ± 0.07		PDG09
	4039.6 ± 4.3	84.5 ± 12.3	0.83 ± 0.20	130 ± 46	BES08
ψ(4160)	4153 ± 3	103 ± 8	0.83 ± 0.07		PDG09
	4191.7 ± 6.5	71.8 ± 12.3	0.48 ± 0.22	293 ± 57	BES08
ψ(4415)	4421 ± 4	62 ± 20	0.58 ± 0.07		PDG09
	4415.1 ± 7.9	71.5 ± 19.0	0.35 ± 0.12	234 ± 88	BES08

Broad Resonances Beyond Open Charm

- What are these broad resonances?
- Mass resgion where some X, Y particles are found.
- Possible new resonance that not yet discoveried?

PTEM

	Scan point	Run number	$E_{e^-}(MeV)$	E_{e^+} (MeV)	E_{cm} (MeV)	
τ	1	24983 - 25015	1771.558 ± 0.067	1771.069 ± 0.053	3542.413 ± 0.085	$\left(-\frac{2}{2} \right)$
	2	25016 - 25094	1777.307 ± 0.047	1776.730 ± 0.046	3553.822 ± 0.075	$E^{\sqrt{S}} \sim 2E^{-1}$
	3	25100 - 25141	1780.926 ± 0.055	1780.431 ± 0.065	3561.142 ± 0.085	$E_{cm} \approx 2E_{beam} 1$
	4	25143 - 25243	1800.526 ± 0.044	1799.878 ± 0.044	3600.186 ± 0.062	8
	1	24937-24937	1544.542 ± 0.135	1544.312 ± 0.217	3088.667 ± 0.256	
	2	24938 - 24942	1547.917 ± 0.099	1547.548 ± 0.106	3095.278 ± 0.145	
	3	24943 - 24949	1548.692 ± 0.103	1548.171 ± 0.086	3096.676 ± 0.135	
J/ψ	4	24959 - 24966	1549.079 ± 0.109	1548.714 ± 0.075	3097.606 ± 0.133	
	5	24967 - 24971	1549.451 ± 0.081	1549.014 ± 0.114	3098.278 ± 0.140	
	6	24972 - 24975	1549.566 ± 0.101	1549.438 ± 0.083	3098.817 ± 0.131	
	7	24976- 24978	1552.186 ± 0.088	1551.936 ± 0.107	3103.934 ± 0.139	
	1	25245 - 25251	1838.183 ± 0.256	1837.940 ± 0.157	3675.901 ± 0.300	
	2	25252-25262	1842.177 ± 0.090	1841.279 ± 0.220	3683.653 ± 0.303	
	3	25264 - 25270	1842.755 ± 0.153	1842.489 ± 0.087	3685.113 ± 0.230	
ψ'	4	25271 - 25295	1843.402 ± 0.075	1842.893 ± 0.110	3686.337 ± 0.189	
	5	25299 - 25314	1844.787 ± 0.125	1844.137 ± 0.107	3688.819 ± 0.226	
	6	25315 - 25322	1846.832 ± 0.138	1846.487 ± 0.108	3693.515 ± 0.245	
	7	25325 - 25337	1844.130 ± 0.091	1843.396 ± 0.088	3687.573 ± 0.158	

Bhabha $e^+e^- \rightarrow e^+e^-$ Di-gamma $e^+e^- \rightarrow \gamma \gamma$

	Scan point	N_2^{obs}	N_1^{obs}	$L_{bhabha} \ (\mathrm{nb}^{-1})$	N^{obs}	$L_{digamma} \ ({\rm nb}^{-1})$
	1	1575827	58018	4502.89	74240	4252.17
au	2	2043538	75371	5877.14	96570	5566.82
	3	1413321	52432	4082.30	67192	3889.29
	4	3411037	126081	10068.29	161482	9553.18
	1	38143	1393	81.79	1804	78.52
	2	114205	7191	239.19	5016	219.26
	3	137995	21744	260.07	5557	243.13
J/ψ	4	109972	17947	206.00	4718	206.55
	5	116221	15593	225.34	5104	223.53
	6	106130	10079	215.17	4950	216.87
	7	150860	6618	324.23	7218	317.31
	1	269201	9878	830.58	12763	787.04
	2	284362	10995	879.30	13291	823.10
	3	285762	12775	878.75	13432	832.47
ψ'	4	414291	20998	1266.84	19097	1184.34
	5	565681	27641	1734.27	26761	1660.77
	6	265322	11889	817.48	12366	767.97
	7	501530	19215	1559.59	23624	1470.75

第十届重味物理会议 Xia L.G.

Elementary parameter in SM (PDG2012)

$$M_{e} = 0.510998910 \pm 0.000000013 \ (2.6 \times 10^{-8})$$

$$M_{\mu} = 105.658367 \pm 0.00004 \ (3.8 \times 10^{-8}) \ (9.0 \times 10^{-9}) \ (9.0 \times 10^{-9})$$

Yoshio Koideo (1981) equality testing

$$m_e + m_\mu + m_\tau = \frac{2}{3} \left(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau} \right)^2 \Delta f_m = \frac{2}{3} \left(\sqrt{m_e} + \sqrt{m_\mu} + \sqrt{m_\tau} \right)^2$$

3×10⁻⁸) ×10⁻⁵ and g_{μ} : coupling constants; τ_{τ} and τ_{μ} :life time of τ and μ ; $B(\tau \rightarrow ev_{e}v_{\tau})$ and $B(\mu \rightarrow ev_{e}v_{\mu})$: decay branching ratio; Δ_{e} :correct factor (phase factor, radiative correction factor of QED, correct factor of propagator of W-meson etc.)

$$= \sqrt{\sum_{i=e,\mu,\tau} \left(m_i - \frac{2}{3} \sum_{k=e,\mu,\tau} \sqrt{m_i m_k} \right)^2 \cdot \left(\frac{\delta m_i}{m_i} \right)^2} \rightarrow \Delta f_m \cong 1/3 \, \delta m_\tau$$