Light hadron results at BESIII

孙振田 USTC&IHEP (For BESIII Collaboration)

HFCPV-2012,Qingdao

Outline

- Introduction
- X(1835) and two new structure in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$
- $p\bar{p}$ threshold enhancement in $J/\psi \rightarrow \gamma p\bar{p}$
- X(1870) in J/ $\psi \rightarrow \omega X$, X $\rightarrow a_0(980)\pi \rightarrow \eta \pi \pi$
- $\omega \phi$ threshold enhancement in $J/\psi \rightarrow \gamma \omega \phi$
- Preliminary PWA results of $J/\psi \rightarrow \gamma \eta \eta / \pi^0 \pi^0$
- Observation of two new N* resonances in $\psi' \rightarrow p\bar{p}\pi^0$
- Isospin violate process $J/\psi \rightarrow \gamma \eta(1405) \rightarrow \gamma f_0(980) \pi^0 \rightarrow \gamma \pi \pi \pi^0$
- Summary

Introduction

- Goal of the study of light hadron spectrosopy:
- ✓ Test theory: non-perturbative QCD(LQCD...)...
- ✓ Search for exotic states: glueball, multiquarks, molecular states...

• Data Samples:

BesII: 58M J/ ψ , 14M ψ (2S) BesIII round one: 225M J/ ψ , 106M ψ (2S) BesIII round two: 1billion J/ ψ , 0.4billion ψ (2S)

X(1835) and two new structure in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

• BESII, PRL 95,262001(2005)

 $M = (1833.7 \pm 6.1 \pm 2.7) \text{MeV/c}^{2}$ $\Gamma = (67.7 \pm 20.3 \pm 7.7) \text{MeV/c}^{2}$ $Br(J/\psi \rightarrow \gamma X) \cdot Br(X \rightarrow \eta' \pi^{+} \pi^{-})$ $= (2.2 \pm 0.4 \pm 0.4) \times 10^{-4}$

- BESIII, PRL 106, 072002(2011)
- Conform the existence of X (1835),
- Two new states are observed.

X(1835) and two new structure in $J/\psi \rightarrow \gamma \eta' \pi^+ \pi^-$

- the parameters of the 3 states.
 - $X(1\overline{8}35)$
 - $M = 1836.5 \pm 3.0 ({\rm stat})^{+5.6}_{-2.1} ({\rm syst})~{\rm MeV}/c^2$

 $\Gamma = 190 \pm 9 ({\rm stat}) {}^{+38}_{-36} ({\rm syst}) ~{\rm MeV}/c^2$

• X(2120)

```
M = 2122.4 \pm 6.7 (\rm{stat})^{+4.7}_{-2.7} (\rm{syst}) \ \rm{MeV} / c^2
```

```
\Gamma = 83 \pm 16 ({\rm stat})^{+31}_{-11} ({\rm syst})~{\rm MeV}/c^2
```

• X(2370)

$$M = 2376.3 \pm 8.7 (\text{stat})^{+3.2}_{-4.3} (\text{syst}) \text{ MeV}/c^2$$
$$\Gamma = 83 \pm 17 (\text{stat})^{+44}_{-6} (\text{syst}) \text{ MeV}/c^2$$

The angular distribution X(1835) consistent with 0⁻⁺
Lattice QDC predicted the lowest 0⁻⁺ glueball to be around 2.3GeV.
PWA needed to determine the J^{PC} of the 3 structures.

$p\bar{p}$ threshold enhancement in $J/\psi \rightarrow \gamma p\bar{p}$

• Observed by BESII. PRL91(2003) 022001

> $M = 1859_{-10}^{+3} + 5_{-25} MeV/c^{2}$ $\Gamma < 30 MeV/c^{2} @ 90\% CL.$

- Confirmed at BESIII with ψ'→ππJ/ψ, J/ψ →γpp
- CPC34(2010)421 $M = 1861_{-13}^{+6} + 7_{-26} MeV/c^{2}$ $\Gamma < 38 MeV/c^{2} @ 90\% CL.$
- □ Not observed in B-meson decay nor J/ψ→ωpp
 → the enhancement isn't pure FSI effect
 □ normal meson/ppbar bound state/multiquark state/glueball?

PWA of $J/\psi \rightarrow \gamma p\bar{p}$ and $\psi' \rightarrow \gamma p\bar{p}$

- PRL108(2012)112003
- PWA with Julich-FSI effects considered.
- **J**^{PC}=**0**⁻⁺

$$M = 1832_{-5}^{+19} \pm 19 \text{ MeV/c}^{2}$$

$$M = 13 \pm 39_{-13}^{+10} \pm 4 \text{ MeV/c}^{2}$$

$$Br(J/\psi \rightarrow \gamma X) \cdot Br(X \rightarrow pp)$$

$$= (9.0_{-1.1}^{+0.4} \pm 2.3) \times 10^{-5}$$

\Box X(pp) and X(1835) observed in J/ $\psi \rightarrow \gamma \eta' \pi \pi$ are the same state?

X(1870) in J/ $\psi \rightarrow \omega X$, X $\rightarrow a_0(980)\pi \rightarrow \eta \pi^+ \pi^-$

• PRL 107, 182001(2011)

Resonance	Mass (MeV/c^2)	Width $({\rm MeV}/c^2)$	\mathcal{B} (10^{-4})
$f_1(1285)$	$1285.1 \pm 1.0^{+1.6}_{-0.3}$	$22.0 \pm 3.1^{+2.0}_{-1.5}$	$1.25 \pm 0.10^{+0.19}_{-0.20}$
$\eta(1405)$	$1399.8 \pm 2.2^{+2.8}_{-0.1}$	$52.8 \pm 7.6^{+0.1}_{-7.6}$	$1.89 \pm 0.21^{+0.21}_{-0.23}$
X(1870)	$1877.3 \pm 6.3^{+3.4}_{-7.4}$	$57 \pm 12^{+19}_{-4}$	$1.50 \pm 0.26 \substack{+0.72 \\ -0.36}$

• X(1870) J^{PC}? X(1835)? Need PWA.

ωφ threshold enhancement in $J/ψ \rightarrow γωφ$

- First observed in BESII. Phys. Rev. Lett. 96(2006)162002
- Partial wave analysis with helicity covariant amplitude.
- Threshold enhancement: X(1810) $J^{PC} = 0^{++}, \quad M = 1812^{+19}_{-26} \pm 18 \text{MeV/c}^2 \quad \Gamma = 105 \pm 20 \pm 28 \text{MeV/c}^2$ $B(J/\psi \rightarrow \gamma X(1810) \cdot B(X(1810) \rightarrow \omega \phi) = (2.61 \pm 0.27 \pm 0.65) \times 10^{-4}$

ωφ threshold enhancement in $J/ψ \rightarrow γωφ$

- PWA with covariant tensor amplitude
- Threshold enhancement: X(1810) $J^{PC} = 0^{++}, \quad M = 1795 \pm 7^{+23}_{-5} \text{ MeV/c}^2 \qquad \Gamma = 95 \pm 10^{+78}_{-34} \text{ MeV/c}^2$ $B(J/\psi \rightarrow \gamma X(1810) \cdot B(X(1810) \rightarrow \omega \phi) = (2.00 \pm 0.08^{+1.38}_{-1.00}) \times 10^{-4}$
- DOZI suppressed, the branch fraction is too large. Why? X(1810) is exotic states? f₀(1710)?

Study of J/ $\psi \rightarrow \gamma \eta \eta / \pi^0 \pi^0$

- $\frac{1}{P.S.}\Gamma(G \rightarrow \pi\pi: K\overline{K}:\eta\eta:\eta\eta':\eta'\eta')$ predicted to be 3:4:1:0:1. Glueball is flavor blindness.
- Neutral channels can take advantage of excellent performance of electromagnetic calorimeter of BESIII.
- GPUPWA package is developed to perform PWA of large data samples.

Preliminary PWA results of $J/\psi \rightarrow \gamma \eta \eta$

PWA results of $J/\psi \rightarrow \gamma \pi^+ \pi^- / \pi^0 \pi^0$ at **BESII**

2.2

Preliminary PWA results of $J/\psi \rightarrow \gamma \pi^0 \pi^0$

25%ev	+Data Global Fit 2** contribution 2++
0	1 2 m(πτ)

Resonances	s $Mass(MeV/c^2)$	$\operatorname{Width}(\operatorname{MeV}/c^2) B$	$Pr(J/\psi \to \gamma X \to \gamma \pi^0 \pi^0)$	Significance
$f_0(600)$	446(fixed)	578(fixed)	$0.91^{+0.02+0.37}_{-0.02-0.21}{\times}10^{-4}$	$> 40\sigma$
$f_2(1270)$	1255^{+1+4}_{-1-2}	177^{+2+1}_{-2-7}	$5.77^{+0.03+0.44}_{-0.03-0.36}{\times}10^{-4}$	$> 40\sigma$
$f_0(1500)$	1445_{-3-4}^{+3+9}	113_{-6-14}^{+6+5}	$0.44^{+0.01+0.06}_{-0.01-0.08}\!\times\!10^{-4}$	27.6σ
$f_{2}^{\prime}(1525)$	$1539\substack{+5+6\\-6-9}$	72_{-9-7}^{+10+30}	$0.09^{+0.01+0.09}_{-0.01-0.01}\!\times\!10^{-4}$	13.5σ
$f_0(1710)$	$1765\substack{+3+4\\-3-5}$	159_{-7-14}^{+7+5}	$1.11^{+0.02+0.13}_{-0.02-0.21}{\times}10^{-4}$	$> 40\sigma$
$f_2(1950)$	$1901\substack{+22+58\\-23-20}$	$313\substack{+48+76\\-43-66}$	$0.11^{+0.01+0.07}_{-0.01-0.06}\!\times\!10^{-4}$	11.4σ
$f_0(2020)$	$1971\substack{+6+25\\-6-7}$	409^{+14+13}_{-13-22}	$5.31^{+0.04+0.45}_{-0.04-0.50}\!\times\!10^{-4}$	35.6σ
$f_2(2150)$	$2160\substack{+13+11\\-13-15}$	$227\substack{+22+20\\-21-38}$	$0.32^{+0.02+0.12}_{-0.02-0.10}{\times}10^{-4}$	14.2σ
$f_2(2340)$	$2419\substack{+13+20\\-13-19}$	$286\substack{+28+22\\-26-42}$	$0.28^{+0.01+0.06}_{-0.01-0.07}\!\times\!10^{-4}$	17.8σ

□ Background is much smaller than BESII □ $f_0(1500)$ and $f_0(1710)$, were both observed. The result are more precision. □ $f_0(600)$ fixed to "The σ pole in J/ ψ → $\omega\pi\pi$ " *PLB* 598 (2004) 149. 14

Observation of two new N* resonances in \psi' \rightarrow p\bar{p}\pi^0

- Non-relativistic three-quark models of baryons predicted more excited states than are found experimentally ("missing resonance problem").
- Most of the data about baryons on PDG are from πN scattering.
- The formula for baryons decay is much more complicated than mesons decay. FDCPWA package is used to generated the formula.

The global fit result: arXiv:1207.0223

Observation of two new N* resonances in \psi' \rightarrow p\bar{p}\pi^0

Resonance	Ν	$\epsilon(\%)$	$B.F.(\times 10^{-5})$
N(940)	$1870^{+90}_{-90}^{+487}_{-327}$	27.5 ± 0.4	$6.42^{+0.20+1.78}_{-0.20-1.28}$
N(1440)	$1060^{+90}_{-90}^{+459}_{-227}$	27.9 ± 0.4	$3.58^{+0.25}_{-0.25}^{+1.59}_{-0.84}$
N(1520)	$190^{+14}_{-14}^{+64}_{-48}$	28.0 ± 0.4	$0.64^{+0.05}_{-0.05}^{+0.22}_{-0.17}$
N(1535)	$673^{+45}_{-45}^{+263}_{-256}$	25.8 ± 0.4	$2.47^{+0.28}_{-0.28}^{+0.99}_{-0.97}$
N(1650)	$1080^{+77}_{-77}^{+382}_{-467}$	27.2 ± 0.4	$3.76^{+0.28}_{-0.28}^{+1.37}_{-1.66}$
N(1720)	$510^{+27}_{-27}^{+50}_{-197}$	26.9 ± 0.4	$1.79^{+0.10}_{-0.10}$
N(2300)	$948^{+68}_{-68}^{+394}_{-213}$	34.2 ± 0.4	$2.62^{+0.28}_{-0.28}^{+1.12}_{-0.64}$
N(2570)	$795_{-45}^{+45}_{-83}^{+127}$	35.3 ± 0.4	$2.13^{+0.08}_{-0.08}^{+0.40}_{-0.30}$
Total	4515 ± 93	25.8 ± 0.4	$16.5 \pm 0.3 \pm 1.5$

Two new N* states are observed, N (2300) and N(2570). M(2300) = $2300^{+40}_{-30} {}^{+109}_{-0} \text{MeV/c}^2$, Γ(2300) = $340^{+30}_{-30} {}^{+110}_{-58} \text{MeV/c}^2$ M(2570) = $2570^{+19}_{-10} {}^{+34}_{-10} \text{MeV/c}^2$, Γ(2570) = $250^{+14}_{-24} {}^{+69}_{-21} \text{MeV/c}^2$

Isospin violate process $J/\psi \rightarrow \gamma \eta(1405) \rightarrow \gamma f_0(980)$ $\pi^0 \rightarrow \gamma \pi \pi \pi^0$

- PRL 108, 182001 (2012)
- $\eta(1405)(0^+(0^{-+})) \rightarrow f_0(980)(0^+(0^{++}))\pi^0(1^-(0^{-+}))$ isospin violate process. Br $(J/\psi \rightarrow \gamma \eta(1405) \rightarrow \gamma \pi^0 f_0(980) \rightarrow \gamma \pi^0 \pi^+ \pi^-) = (1.50 \pm 0.11 \pm 0.11) \times 10^{-5}$ Br $(J/\psi \rightarrow \gamma \eta(1405) \rightarrow \gamma \pi^0 f_0(980) \rightarrow \gamma \pi^0 \pi^0 \pi^0) = (7.10 \pm 0.82 \pm 0.72) \times 10^{-5}$
- The branching fraction is surprising large.

- f₀(980): PDG value Γ=40~100MeV
- How to explain the narrow width of f₀(980) and large branch fraction of isospin violated process?
- Triangle singularity(TS) mechanism. Phys. Rev.Lett. 108, 081803 (2012).

Summary

- Many interesting states are observed: X(1835)(0⁻⁺), X (pp)(0⁻⁺), X(1870)(?), X(ωφ)(0⁺⁺)
- Some of them are exotic states candidates.
 lowest scalar glueball(f₀(1500), f₀(1710), x(ωφ)?...)
 lowest pseudo-scalar glueball(X(2370)(?)?, η(1405)?)
- Troubled by the possible mixing between glueball and $q\bar{q}$, it's hard to distinguish an exotic state from normal states.
- PWA is needed to determine the property of these states.