THE IMPLICATIONS OF THE LHC HIGGS SEARCHES IN THE SUPERSYMMETRIC STANDARD MODELS

#### Tianjun Li

Institute of Theoretical Physics, Chinese Academy of Sciences

- I. Supersymmetric Standard Model Overview
- II. Higgs Physics
- III. Supersymmetric Standard Models
- IV. Electroweak Supersymmetry
- V. Conclusion

HFCPV-2012, Qingdao, Shangdong, October 25, 2012

# I. SUPERSYMMETRIC STANDARD MODEL OVERVIEW

# **Standard Model:**

- Fine-tuning problems: cosmological constant problem; gauge hierarchy problem; strong CP problem; SM fermion masses and mixings; ...
- Aesthetic problems: interaction and fermion unification; gauge coupling unification; charge quantization; too many parameters; ...

#### **Supersymmetric Standard Model:**

- Solving the gauge hierarchy problem
- Gauge coupling unification
- Radiatively electroweak symmetry breaking Large top quark mass
- Natural dark matter candidates Neutralino, sneutrino, gravitino, ...
- Electroweak baryogenesis
- Electroweak precision: R parity

# **Problems in the MSSM:**

- $\mu$  problem
  - $\mu H_u H_d$
- Little hierarchy problem Fine-tuning for the lightest CP even Higgs mass
- CP violation and EDMs
- FCNC
- Dimension-5 proton decays

# The Grand Unified Theories: SU(5), and SO(10), etc.

- Unification of the gauge interactions, and unifications of the SM fermions
- Charge quantization
- Gauge coupling unification in the MSSM, and Yukawa unification  $y_t = y_b = y_{\tau}$
- Radiative electroweak symmetry breaking due to the large top quark Yukawa coupling
- Weak mixing angle at weak scale  $M_Z$
- Neutrino masses and mixings by seesaw mechanism

# **Problems:**

- Gauge symmetry breaking
- Doublet-triplet splitting problem

Higgs particles do not form complete GUT multiplet at low energy

- Proton decay problem
- Fermion mass problem

GUT relation  $m_e/m_\mu = m_d/m_s$ 

# **String Models:**

- Calabi-Yau compactification of heterotic string theory
- Orbifold compactification of heterotic string theory
   Grand Unified Theory (GUT) can be realized naturally through the elegant E<sub>8</sub> breaking chain: E<sub>8</sub> ⊃ E<sub>6</sub> ⊃ SO(10) ⊃ SU(5)
- D-brane models on Type II orientifolds N stacks of D-branes gives us U(N) gauge symmetry: Pati-Salam Models
- Free fermionic string model builing

Realistic models with clean particle spectra can only be constructed at the Kac-Moody level one: the Standard-like models, Pati-Salam models, and flipped SU(5) models.

# $\mathcal{F}$ -Theory Model Building

- The models are constructed locally, and then the gravity should decoupled, *i.e.*,  $M_{\rm GUT}/M_{\rm Pl}$  is a small number.
- The SU(5) and SO(10) gauge symmetries can be broken by the  $U(1)_Y$  and  $U(1)_X/U(1)_{B-L}$  fluxes.
- Gauge mediated supersymmetry breaking can be realized via instanton effects. Gravity mediated supersymmetry breaking predicts the gaugino mass relation.
- All the SM fermion Yuakwa couplings can be generated in the SU(5) and SO(10) models.
- The doublet-triplet splitting problem, proton decay problem, μ
   problem as well as the SM fermion masses and mixing problem can
   be solved.

# **Phenomenological constraints:**

- The colored supersymmetric particles (sparticles) such as squarks and gluinos (at least the first two generation squarks) must have masses around the 1.5 TeV or larger from the ATLAS and CMS Collaborations at the LHC.
- The Higgs boson mass is 126.0 ± 0.4(stat) ± 0.4(sys) GeV and 125.3 ± 0.4(stat) ± 0.5(sys) GeV from the ATLAS and CMS Collaborations at the LHC, respectively.
- The cold dark matter relic density is  $0.112 \pm 0.0056$  from the seven-year WMAP measurements.
- The spin-independent elastic dark matter-nucleon scattering cross-sections are smaller than about  $2 \times 10^{-45}$  cm<sup>2</sup> for the dark matter mass around 55 GeV from XENON100 experiment at 90% C.L..

- The experimental limit on the Flavor Changing Neutral Current (FCNC) process, b → sγ. The limits, where the experimental and theoretical errors are added in quadrature, are
   2.86 × 10<sup>-4</sup> ≤ BR(b → sγ) ≤ 4.18 × 10<sup>-4</sup>.
- The anomalous magnetic moment of the muon  $(g_{\mu} 2)/2$ . The experimental value of the muon  $(g_{\mu} 2)/2$  is  $\Delta a_{\mu} = a_{\mu}^{\exp} - a_{\mu}^{SM} = (26.1 \pm 8.0) \times 10^{-10}$ .
- The experimental limit on the process B<sub>s</sub> → μ<sup>+</sup>μ<sup>-</sup>. The upper bound on BR(B<sub>s</sub> → μ<sup>+</sup>μ<sup>-</sup>) is 4.5(3.8) × 10<sup>-9</sup> at 95% (90%) C.L. from the CMS and LHCb collaborations.
- The experimental limit on the process  $B_u \to \tau \bar{\nu}_{\tau}$  is  $0.85 \leq \text{BR}(B_u \to \tau \bar{\nu}_{\tau})/\text{SM} \leq 1.65.$

The squarks might be heavy while the sleptons and electroweak gauginos may be light.

#### **Supersymmetric SMs:**

- Natural supersymmetry <sup>a</sup>.
- Supersymmetric models with sub-TeV squarks that can escape/relax the missing energy constraints: *R* parity violation <sup>b</sup>; compressed supersymmetry <sup>c</sup> ; stealth supersymmetry <sup>d</sup>; etc.
- Supersymmetric models with sub-TeV squarks that decrease the cross sections: supersoft supersymmetry <sup>e</sup>.

<sup>b</sup> R. Barbier, C. Berat, M. Besancon, M. Chemtob, A. Deandrea, E. Dudas, P. Fayet and S. Lavignac *et al.*, Phys. Rept. **420**, 1 (2005) [hep-ph/0406039].

<sup>e</sup> G. D. Kribs and A. Martin, arXiv:1203.4821 [hep-ph], and references therein.

<sup>&</sup>lt;sup>a</sup>S. Dimopoulos and G. F. Giudice, Phys. Lett. B **357**, 573 (1995) [hep-ph/9507282]; A. G. Cohen, D. B. Kaplan and A. E. Nelson, Phys. Lett. B **388**, 588 (1996) [hep-ph/9607394].

<sup>&</sup>lt;sup>c</sup> T. J. LeCompte and S. P. Martin, Phys. Rev. D **84**, 015004 (2011) [arXiv:1105.4304 [hep-ph]]; Phys. Rev. D **85**, 035023 (2012) [arXiv:1111.6897 [hep-ph]].

<sup>&</sup>lt;sup>d</sup> J. Fan, M. Reece and J. T. Ruderman, JHEP **1111**, 012 (2011) [arXiv:1105.5135 [hep-ph]]; arXiv:1201.4875 [hep-ph].

# **Dark Matter in Supersymmetric Standard Model:**

- Supersymmetry was proposed to solve the gauge hiearchy problem.
- The lightest supersymmetric particle (LSP) needs not to provide the observed dark matter density.
- The LSP needs not to be a dark matter candidate: *R*-parity violations.
- The elegant solution to the strong CP problem is Peccei-Quinn (PQ) mechanism, and the invisible axion is a good cold dark matter candidate with correct dark matter density.

#### **Natural supersymmetry conditions::**

- The  $\mu$  term or effective  $\mu$  term is smaller than 300 GeV.
- The squar root  $M_{\tilde{t}} \equiv \sqrt{m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2}$  of the sum of the two stop mass squares is smaller than 1.2 TeV. Consequencely, we can show that the light sbottom mass is smaller than  $m_{\tilde{t}_2}$ .
- The gluino mass is lighter than 1.5 TeV.

II. HIGGS PHYSICS



Figure 1: Measured relative signal strength  $\mu$  in various channels of the ATLAS, CMS, and Tevatron Higgs searches.

# **Properties:**

- The Higgs boson mass is about 125.5 GeV.
- There exists excesses for Higgs decays to two gamma: the signal strength is about  $1.6^{+0.4}_{-0.4}$  and  $2.3^{+1.0}_{-0.9}$  for gluon-gluon fusion and vector-boson fusion, respectively.
- The signal strengths for Higgs decays to VV are about  $1.0^{+0.3}_{-0.3}$ .
- The signal strengths for Higgs decays to  $b\bar{b}$  and  $\tau^-\tau^+$  are about 0.5.

### **Higgs boson mass:**

- In the MSSM, the lightest CP-even Higgs boson mass at tree level is smaller than M<sub>Z</sub> | cos 2β | since the Higgs quartic coupling is determined by the SU(2)<sub>L</sub> × U(1)<sub>Y</sub> gauge couplings from D-terms.
- The Higgs boson mass can be lifted radiatively due to large top quark Yukawa couplings in the MSSM.
- The Higgs boson mass can be lifted: singlet or triplet Higgs fields at tree level, additional U(1)' gauge symmetry, or vector-like particles at one-loop level.

$$m_h^2 \simeq M_Z^2 \cos^2 2\beta + \frac{3}{4\pi^2} \frac{m_t^4}{v^2} \left[ \frac{1}{2} \tilde{X}_t + t + \frac{1}{16\pi^2} \left( \frac{3}{2} \frac{m_t^2}{v^2} - 32\pi\alpha_3 \right) \left( \tilde{X}_t t + t^2 \right) \right] \,,$$

where

$$t = \log \frac{M_{\rm SUSY}^2}{m_t^2} \; ,$$

$$\tilde{X}_t = \frac{2\tilde{A}_t^2}{M_{\text{SUSY}}^2} \left( 1 - \frac{\tilde{A}_t^2}{12M_{\text{SUSY}}^2} \right) ,$$
  
$$\tilde{A}_t = A_t - \mu \cot \beta .$$

The maximum is at large values of  $\tan \beta$  and  $\tilde{A}_t = \sqrt{6}M_{SUSY}$ .

III. SUPERSYMMETRIC STANDARD MODELS

#### Minimal Supersymmetric Standard Model (MSSM):

• The Higgs couplings to SM fermions in the units of SM couplings:  $y'_t = \cos \alpha / \sin \beta, y'_b = y'_{\tau} = -\sin \alpha / \cos \beta.$ 

$$h = \cos \alpha H_u^0 - \sin \alpha H_d^0$$

- The Higgs decays to  $b\bar{b}$  and  $\tau^-\tau^+$  can be suppressed.
- The Higgs decays to VV and  $\gamma\gamma$  can be enhanced similarly.
- To explain the ATLAS and CMS data, we need to decrease the Higgs decays to VV while increas the Higgs decays to γγ.

# Minimal Supersymmetric Standard Model (MSSM): A Radiatively Light Stop <sup>a</sup>

• The best global fit gives <sup>b</sup>

$$c_g^2 = \frac{\Gamma(h \to gg)}{\Gamma^{\rm SM}(h \to gg)} \approx 0.7, \ c_\gamma^2 = \frac{\Gamma(h \to \gamma\gamma)}{\Gamma^{\rm SM}(h \to \gamma)} \approx 2.1 \ .$$

• The very light stop can change the reduced couplings of hGG and  $h\gamma\gamma$  simultaneously. <sup>c</sup>

$$c_g \approx 1 + \frac{1}{4} \left( \frac{m_t^2}{m_{\widetilde{t}_1}^2} - \eta_t^2 \frac{m_t^2}{m_{\widetilde{t}}^2} \right) \sim -0.84,$$

$$c_{\gamma} \approx 1.28 - 0.28 c_g \; .$$

- This is valid for  $m_h \simeq 125$  GeV and  $c_V \simeq 1$ ..
- The possible problem: the  $SU(3)_C$  symmetry breaking.

<sup>b</sup> P. P. Giardino, K. Kannike, M. Raidal and A. Strumia, arXiv:1207.1347; M. R. Buckley and D. Hooper,

arXiv:1207.1445; D. Carmi, A. Falkowski, E. Kuflik, T. Volansky and J. Zupan, arXiv:1207.1718. <sup>c</sup>K. Blum, R. T. D'Agnolo and J. Fan, arXiv:1206.5303.

<sup>&</sup>lt;sup>a</sup> Z. Kang, TL, J. Li and Y. Liu, arXiv:1208.2673 [hep-ph].

#### **Points:**

- The light stop running mass is used in the Higgs boson mass calculations.
- The light stop physical mass is used in the Higgs decays.

$$\omega_t \approx 1 + \frac{2}{3} \frac{\alpha_s}{\pi} \left[ \frac{2M_3^2}{m_{\tilde{t}_1}^2(Q)} \left( 1 - \ln \frac{M_3^2}{Q^2} \right) - \frac{m_{\tilde{t}_2}^2(Q)}{2m_{\tilde{t}_1}^2} \left( 1 - \ln \frac{m_{\tilde{t}_2}^2(Q)}{Q^2} \right) \right]_{Q=m_{\tilde{t}_L}}$$

Increasing the Higgs boson mass and Higgs boson decays to  $\gamma\gamma$  simultaneously.

# The Next to the Minimal Supersymmetric Standard Model (NMSSM): <sup>a</sup>

- An extra SM singlet Higgs field S and a  $Z_3$  symmetry:  $\lambda SH_dH_u$  and  $\kappa S^3/3$ .
- Scenario I: *R*-parity is conserved and the LSP neutralino relic density is around the observed value.
- Scenario II: *R*-parity is conserved and the LSP neutralino relic density is smaller than the observed value.
- Scenario III: *R*-parity is violated and then the LSP neutralino is not stable.

<sup>&</sup>lt;sup>a</sup> T. Cheng, J. Li, TL, X. Wan, Y. k. Wang and S. -h. Zhu, arXiv:1207.6392 [hep-ph].

The SM-like Higgs field is:

$$H_1 = S_{1,d}H_d^0 + S_{1u}H_u^0 + S_{1s}S ,$$
  

$$H_2 = S_{2,d}H_d^0 + S_{2u}H_u^0 + S_{2s}S .$$

The most general renormalizable, gauge and  $Z_3$  invariant, and *R*-parity odd superpotential terms in the NMSSM are

$$W_{\rm RPV} = \lambda_i S L_i H_u + \frac{1}{2} \lambda_{ijk} L_i L_j E_k^c + \lambda'_{ijk} L_i Q_j D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_j^c D_k^c + \frac{1}{2} \lambda''_{ijk} U_i^c D_k$$

### The NMSSM:

- $\chi^2$  analyses for all the phenomenological results: Scenario I has 13 degrees of freedom while Scenarios II and III have 12.
- Fine-tuning  $\Delta_F$ : the maximum of the logarithmic derivative of  $M_Z$  with respect to all the fundamental parameters  $a_i$  at the GUT scale

$$\Delta_{\rm FT} = {\rm Max}\{\Delta_i^{\rm GUT}\}, \quad \Delta_i^{\rm GUT} = \left|\frac{\partial {\rm ln}(M_Z)}{\partial {\rm ln}(a_i^{\rm GUT})}\right|.$$



Figure 2: The fitting results for Scenario I with relic density included in the  $\chi^2$ . The red stars show the best-fitted benchmark point with minimal  $\chi^2_{min} = 21.16$ . The green, blue, and black regions are respectively one, two, and three standard deviation regions with  $\chi^2 < \chi^2_{min} + 1$ ,  $\chi^2_{min} + 4$  and  $\chi^2_{min} + 9$ .

| $tan \rho$                                                   | 2.430  | 2.031  | 2.910    | 5.295  | $\iota$                                        | 0/3   | 037   | 1042  | 933    |
|--------------------------------------------------------------|--------|--------|----------|--------|------------------------------------------------|-------|-------|-------|--------|
| $\lambda$                                                    | 0.601  | 0.550  | 0.564    | 0.536  | $\widetilde{b}_1$                              | 783   | 768   | 994   | 880    |
| $\kappa$                                                     | 0.245  | 0.249  | 0.268    | 0.243  | $\widetilde{b}_2$                              | 983   | 979   | 1296  | 1114   |
| $A_0$                                                        | -1180  | -1253  | -1779    | -1441  | $\widetilde{u}_R/\widetilde{c}_R$              | 1053  | 1052  | 1397  | 1197   |
| $A_{\lambda}$                                                | -315   | -230   | -628     | -193   | $\widetilde{u}_L/\widetilde{c}_L$              | 1059  | 1057  | 1398  | 1206   |
| $A_{\kappa}$                                                 | -1.904 | -2.028 | -218.408 | -1.900 | $\widetilde{d}_R/\widetilde{s}_R$              | 1014  | 1013  | 1342  | 1153   |
| $\mu_{	extbf{eff}}$                                          | 130    | 124    | 123      | 128    | $\widetilde{d}_L/\widetilde{s}_L$              | 1061  | 1059  | 1399  | 1208   |
| $M_1$                                                        | 207    | 204    | 266      | 242    | $H_1^0$                                        | 108.5 | 95.5  | 111.7 | 91.7   |
| $M_2$                                                        | 384    | 380    | 493      | 449    | $H_2^0$                                        | 125.5 | 125.4 | 125.2 | 124.2  |
| $M_3$                                                        | 1091   | 1081   | 1368     | 1259   | $H^0_3$                                        | 359.7 | 396.3 | 385.6 | 461.1  |
| $\widetilde{\chi}_1^0$                                       | 75     | 70     | 77       | 76     | $A_1$                                          | 99.6  | 123.8 | 91.7  | 138.4  |
| $\widetilde{\chi}_2^0$                                       | 163    | -156   | -156     | -158   | $A_2$                                          | 353.4 | 390.0 | 377.9 | 455.9  |
| $\widetilde{\chi}_3^0$                                       | -168   | 163    | 172      | 171    | $H^{\pm}$                                      | 343.9 | 383.2 | 371.3 | 450.2  |
| $\widetilde{\chi}_4^0$                                       | 219    | 216    | 273      | 250    | $\Omega\hbar^2$                                | 0.110 | 0.104 | 0.103 | 0.109  |
| $\widetilde{\chi}_5^0$                                       | 415    | 410    | 521      | 475    | $\Delta_{a_{\mu}} \ [10^{-10}]$                | 2.317 | 2.586 | 1.157 | 1.823  |
| $\widetilde{\chi}_1^{\pm}$                                   | 114    | 109    | 113      | 117    | $\sigma^{si}(p)$ [10 <sup>-10</sup> pb]        | 7.468 | 1.137 | 3.208 | 39.683 |
| $\widetilde{\chi}_2^{\pm}$                                   | 414    | 409    | 520      | 475    | $\operatorname{Br}^{(b \to s\gamma)}[10^{-4}]$ | 3.342 | 2.633 | 2.714 | 2.747  |
| $\widetilde{g}$                                              | 1134   | 1125   | 1436     | 1305   | $\Delta_{ m FT}$                               | 62.7  | 74.0  | 109.3 | 101.5  |
| $\widetilde{ u}_{e/\mu}$                                     | 457    | 472    | 741      | 497    | $R_{2 m VBF}^{\gamma\gamma}$                   | 1.48  | 1.60  | 1.75  | 1.46   |
| $\widetilde{ u}_{	au}$                                       | 456    | 471    | 740      | 496    | $R_2^{\gamma\gamma}$                           | 1.58  | 1.43  | 1.45  | 1.31   |
| $\widetilde{\rho}_{\mathrm{D}}/\widetilde{\mu}_{\mathrm{D}}$ | 178    | 216    | 482      | 126    | $B_{2}^{WW}$                                   | 1 25  | 1 10  | 1.07  | 1 00   |



Figure 3: The fitting results for Scenario II with relic density smaller than the 95% C.L. upper limit. The red stars show the best-fitted benchmark point with minimal  $\chi^2_{min} = 19.35$ . The green, blue, and black regions are respectively one, two, and three standard deviation regions with  $\chi^2 < \chi^2_{min} + 1$ ,  $\chi^2_{min} + 4$ , and  $\chi^2_{min} + 9$ .

| $  \tan \rho$                                                       | 5.207  | 2.318  | 2.408    | 1.820  | $\iota$                                                        | 1237   | /1/    | 930    | 994   |
|---------------------------------------------------------------------|--------|--------|----------|--------|----------------------------------------------------------------|--------|--------|--------|-------|
| $\lambda$                                                           | 0.452  | 0.617  | 0.582    | 0.584  | $\widetilde{b}_1$                                              | 1093   | 654    | 880    | 866   |
| $\kappa$                                                            | 0.214  | 0.295  | 0.247    | 0.172  | $\widetilde{b}_2$                                              | 1348   | 835    | 1153   | 1058  |
| $A_0$                                                               | -1520  | -1090  | -1519    | -986   | $\widetilde{u}_R/\widetilde{c}_R$                              | 1434   | 898    | 1240   | 1127  |
| $A_{\lambda}$                                                       | -296   | -248   | -618     | -380   | $\widetilde{u}_L/\widetilde{c}_L$                              | 1445   | 903    | 1237   | 1135  |
| $A_{\kappa}$                                                        | -1.354 | -1.049 | -253.408 | -1.707 | $\widetilde{d}_R/\widetilde{s}_R$                              | 1384   | 865    | 1192   | 1086  |
| $\mu_{	ext{eff}}$                                                   | 130    | 129    | 118      | 123    | $\widetilde{d}_L/\widetilde{s}_L$                              | 1446   | 905    | 1239   | 1136  |
| $M_1$                                                               | 287    | 173    | 224      | 224    | $H_1^0$                                                        | 115.2  | 106.5  | 99.7   | 98.0  |
| $M_2$                                                               | 530    | 324    | 416      | 416    | $H_2^0$                                                        | 124.4  | 126.2  | 124.7  | 126.0 |
| $M_3$                                                               | 1467   | 933    | 1169     | 1173   | $H_3^0$                                                        | 440.5  | 363.1  | 332.7  | 290.1 |
| $\widetilde{\chi}_1^0$                                              | 87     | 70     | 69       | 74     | $A_1$                                                          | 66.1   | 145.4  | 103.3  | 74.6  |
| $\widetilde{\chi}_2^0$                                              | -152   | -166   | -156     | 133    | $A_2$                                                          | 435.0  | 355.4  | 325.3  | 288.4 |
| $\widetilde{\chi}_3^0$                                              | 167    | 170    | 158      | -166   | $H^{\pm}$                                                      | 433.6  | 345.6  | 316.3  | 275.7 |
| $\widetilde{\chi}_4^0$                                              | 292    | 194    | 233      | 233    | $\Omega\hbar^2$                                                | 0.038  | 0.001  | 0.072  | 0.070 |
| $\widetilde{\chi}_5^0$                                              | 557    | 358    | 446      | 444    | $\Delta_{a_{\mu}} [10^{-10}]$                                  | 1.385  | 3.410  | 1.100  | 1.513 |
| $\widetilde{\chi}_1^{\pm}$                                          | 122    | 107    | 104      | 107    | $\sigma^{si}(p)$ [10 <sup>-10</sup> pb]                        | 59.671 | 39.947 | 22.116 | 28.06 |
| $\widetilde{\chi}_2^{\pm}$                                          | 556    | 357    | 446      | 444    | Br <sup><math>(b \to s\gamma)</math></sup> [10 <sup>-4</sup> ] | 3.553  | 2.294  | 2.914  | 4.123 |
| $\widetilde{g}$                                                     | 1529   | 968    | 1235     | 1218   | $\Delta_{ m FT}$                                               | 130.4  | 48.8   | 75.7   | 59.6  |
| $\widetilde{ u}_{e/\mu}$                                            | 680    | 377    | 710      | 489    | $R_{2 m VBF}^{\gamma\gamma}$                                   | 1.08   | 1.68   | 1.53   | 1.24  |
| $\widetilde{ u}_{	au}$                                              | 679    | 377    | 709      | 489    | $R_2^{\gamma\gamma}$                                           | 1.34   | 1.45   | 1.42   | 1.42  |
| $\left  \widetilde{\rho}_{\rm D} / \widetilde{\mu}_{\rm D} \right $ | 376    | 122    | 510      | 101    | $B_{2}WW$                                                      | 0.80   | 1 00   | 1 10   | 1 00  |



Figure 4: The fitting results for Scenario III without *R*-parity. The red stars show the best-fitted benchmark point with minimal  $\chi^2_{min} = 19.67$ . The magenta region corresponds to  $R_{\gamma\gamma} > 1.4$ ,  $R_{VV} < 1.1$ ,  $R_{bb} < 1.0$ ,  $R_{\tau\tau} < 1.0$ ,  $M_{\tilde{t}} = \sqrt{m_{\tilde{t}_1}^2 + m_{\tilde{t}_2}^2} < 1.2 \text{TeV}$ ,  $\mu_{\text{eff}} < 300 \text{ GeV}$ ,  $M_{\tilde{g}} < 1.2 \text{ TeV}$ ,  $\chi^2 < \chi^2_{min} + 4$ , and  $\Delta_{\text{FT}} < 50$ .

| $\tan \rho$                                                         | 2.341    | 1.635    | 2.731  | 2.039                  | $\iota$                                         | 923   | 094   | 032   |
|---------------------------------------------------------------------|----------|----------|--------|------------------------|-------------------------------------------------|-------|-------|-------|
| $\lambda$                                                           | 0.604    | 0.589    | 0.623  | 0.614                  | $\widetilde{b}_1$                               | 814   | 610   | 793   |
| $\kappa$                                                            | 0.295    | 0.364    | 0.288  | 0.318                  | $\widetilde{b}_2$                               | 1012  | 778   | 1020  |
| $A_0$                                                               | -1063    | -372     | -1322  | -620                   | $\widetilde{u}_R/\widetilde{c}_R$               | 1078  | 827   | 1097  |
| $A_{\lambda}$                                                       | -329     | -161     | -267   | -9.93×10 <sup>-6</sup> | $\widetilde{u}_L/\widetilde{c}_L$               | 1083  | 823   | 1101  |
| $A_{\kappa}$                                                        | -128.134 | -628.214 | -0.877 | -1.459                 | $\widetilde{d}_R/\widetilde{s}_R$               | 1039  | 798   | 1056  |
| $\mu_{	extbf{eff}}$                                                 | 144      | 162      | 150    | 166                    | $\widetilde{d}_L/\widetilde{s}_L$               | 1085  | 825   | 1103  |
| $M_1$                                                               | 207      | 136      | 212    | 186                    | $H_1^0$                                         | 120.5 | 114.3 | 119.6 |
| $M_2$                                                               | 384      | 255      | 393    | 346                    | $H_2^0$                                         | 126.9 | 124.6 | 124.9 |
| $M_3$                                                               | 1090     | 745      | 1114   | 990                    | $H_3^0$                                         | 367.8 | 342.7 | 436.6 |
| $\widetilde{\chi}_1^0$                                              | 91       | 86       | 92     | 107                    | $A_1$                                           | 154.3 | 300.6 | 157.1 |
| $\widetilde{\chi}_2^0$                                              | -177     | 160      | -184   | 195                    | $A_2$                                           | 360.0 | 335.1 | 430.1 |
| $\widetilde{\chi}^0_3$                                              | 187      | -189     | 191    | -197                   | $H^{\pm}$                                       | 352.6 | 330.2 | 421.7 |
| $\widetilde{\chi}_4^0$                                              | 222      | 232      | 228    | 221                    | $\Omega\hbar^2$                                 | ×     | ×     | ×     |
| $\widetilde{\chi}_5^0$                                              | 417      | 310      | 425    | 384                    | $\Delta_{a_{\mu}} [10^{-10}]$                   | 1.893 | 1.587 | 2.207 |
| $\widetilde{\chi}_1^{\pm}$                                          | 126      | 122      | 133    | 141                    | $\sigma^{si}(p)$ [10 <sup>-10</sup> pb]         | ×     | ×     | ×     |
| $\widetilde{\chi}_2^{\pm}$                                          | 416      | 306      | 425    | 383                    | $\operatorname{Br}^{(b \to s\gamma)} [10^{-4}]$ | 3.586 | 3.413 | 2.560 |
| $\widetilde{g}$                                                     | 1138     | 796      | 1162   | 1035                   | $\Delta_{ m FT}$                                | 59.5  | 27.0  | 68.4  |
| $\widetilde{ u}_{e/\mu}$                                            | 513      | 502      | 514    | 475                    | $R_{2 m VBF}^{\gamma\gamma}$                    | 0.88  | 0.93  | 1.60  |
| $\widetilde{ u}_{	au}$                                              | 512      | 502      | 514    | 475                    | $R_2{}^{\gamma\gamma}$                          | 1.34  | 1.46  | 1.41  |
| $\left  \widetilde{\rho}_{\rm D} / \widetilde{\mu}_{\rm D} \right $ | 291      | 305      | 273    | 280                    | $R_{2}^{WW}$                                    | 0.81  | 0.95  | 1 08  |

#### **Properties:**

- The benchmark points in Scenarios I and II have fine-tuning from about 1% to 2%, while the benchmark points in Scenario III have fine-tuning from about 2% to 3.7%.
- In the best benchmark point IIIA we have χ<sup>2</sup> = 21.31, and Δ<sub>FT</sub> = 27.0, *i.e.*, 3.7% fine-tuning. Also, all the supersymmetric particles are lighter than 830 GeV.
- All the benchmark points except  $II\chi^2_{min}$  satisfy the naturalnes conditions:  $\mu_{\text{eff}} < 300 \text{ GeV}$ ,  $M_{\tilde{t}} < 1.2 \text{ TeV}$ , and  $M_{\tilde{g}} \leq 1.5 \text{ TeV}$ . Note that  $\Delta_{FT} = 130.4$  in benchmark point  $II\chi^2_{min}$ , the two fine-tuning definitions in Section II are compatible.

#### **Properties:**

- The SM-like Higgs boson is  $H_2^0$ .
- tan β is generically smaller than about 4.5, and then we have the small anomalous magnetic moment of the muon (g<sub>µ</sub> 2)/2, *i.e.*, Δa<sub>µ</sub> < 4.0 × 10<sup>-10</sup>.
- The correlation between  $R_2^{\gamma\gamma}$  and  $R_2^{VV}$  roughly is  $R_2^{\gamma\gamma} \sim 1.27 \times R_2^{VV}$ .
- We do have some viable parameter space which indeed have
   R<sub>2</sub><sup>γγ</sup> ≥ 1.4 and R<sub>2</sub><sup>VV</sup> ≤ 1.1. The Higgs decays to γγ can be enhanced due to the light stops and Higgsinos.

- The generic features for the parameter space with small χ<sup>2</sup> are that the light stop is around 500 GeV or smaller, the singlino and Higgsino are light neutralinos and chargino, the Wino-like chargino is heavy, and the Bino-like and Wino-like neutralinos are the second heaviest neutralino and the heaviest neutralino, respectively.
- In Scenario III, the constraints from the LHC supersymmetry searbles and XENON100 experiment can be escaped, and the *R*-parity violating λ<sub>ijk</sub> and λ'<sub>ijk</sub> terms can increase (g<sub>μ</sub> 2)/2 and generate the neutrino masses and mixings. Therefore, Scenario III with *R*-parity violation is more natural and realistic than Scenarios I and II.

IV. ELECTROWEAK SUPERSYMMETRY

# **Electroweak Supersymmetry** <sup>a</sup>

- String model building strongly implies that the three families of the SM fermions have the same origin. Thus, all the squarks may be heavier.
- The LHC supersymmetry and Higgs searches and B physics constraints imply the heavy squarks.
- To explain the (g<sub>µ</sub> 2)/2 results, the smuon may need to be light. Thus, the sletons may be light.
- The observed dark matter density can be realized via the LSP neutralino and stau coannihilations.
- XENON100 constraints: small Higgsino/ $\tilde{W}^0$  component for LSP neutralino, and relatively heavy squarks.

<sup>&</sup>lt;sup>a</sup> T. Cheng, J. Li, TL, D. V. Nanopoulos and C. Tong, arXiv:1202.6088 [hep-ph].
#### **Electroweak Supersymmetry:**

The squarks and/or glunios are heavy around a few TeV while the sleptons, bino and winos are light and within one TeV. The Higgsinos (or  $\mu$  term) can be either heavy or light.

- $M_3$  is about a few TeV while the squark soft masses are small.
- $M_3$  is small while the squark soft masses are about a few TeV.
- Both  $M_3$  and squark soft masses are heavy.

### **GmSUGRA** can realize electroweak supersymmetry.

# **mSUGRA**: Grand Unified Theories with Gravity Mediated Supersymmetry Breaking <sup>a</sup>

$$\frac{1}{\alpha_3} = \frac{1}{\alpha_2} = \frac{1}{\alpha_1},$$
$$\frac{M_3}{\alpha_3} = \frac{M_2}{\alpha_2} = \frac{M_1}{\alpha_1}.$$

<sup>a</sup>A. H. Chamseddine, R. L. Arnowitt and P. Nath, Phys. Rev. Lett. **49**, 970 (1982); H. P. Nilles, Phys. Lett. B **115**, 193 (1982); L. E. Ibanez, Phys. Lett. B **118**, 73 (1982); R. Barbieri, S. Ferrara and C. A. Savoy, Phys. Lett. B **119**, 343 (1982); H. P. Nilles, M. Srednicki and D. Wyler, Phys. Lett. B **120**, 346 (1983); J. R. Ellis, D. V. Nanopoulos and K. Tamvakis, Phys. Lett. B **121**, 123 (1983); J. R. Ellis, J. S. Hagelin, D. V. Nanopoulos and K. Tamvakis, Phys. Lett. B **125**, 275 (1983); L. J. Hall, J. D. Lykken and S. Weinberg, Phys. Rev. D **27**, 2359 (1983).

#### **Observations:**

- Gauge coupling unification and gaugino mass unification.
- 1/α<sub>i</sub> and M<sub>i</sub>/α<sub>i</sub> satisfy the same equation x<sub>3</sub> = x<sub>2</sub> = x<sub>1</sub> at the GUT scale.
- M<sub>i</sub>/α<sub>i</sub> are constant under one-loop RGE running, so the above gaugino mass relation is valid from the GUT scale to the electroweak scale at one loop.
- Two-loop RGE running effects on gaugino masses are very small, thus, this gaugino mass relation may be tested at the LHC and ILC where the gaugino masses can be measured <sup>a</sup>.

<sup>&</sup>lt;sup>a</sup>W. S. Cho, K. Choi, Y. G. Kim and C. B. Park, Phys. Rev. Lett. **100**, 171801 (2008); M. M. Nojiri, Y. Shimizu, S. Okada and K. Kawagoe, JHEP **0806**, 035 (2008); V. D. Barger, T. Han, T. Li and T. Plehn, Phys. Lett. B **475**, 342 (2000).

#### **Modification of Gauge Coupling Unification:** <sup>a</sup>

• The SM gauge couplings need not be unified at the GUT Scale due to the high-dimensional operators

$$\mathcal{L} \supset \frac{c}{M_*} \operatorname{Tr} \left( \Phi F_{\mu\nu} F^{\mu\nu} \right)$$

$$\delta(1/g_3^2)$$
 :  $\delta(1/g_2^2)$  :  $\delta(1/g_1^2) = 2$  :  $-3$  :  $-1$ 

• M<sub>\*</sub> can be the reduced Planck scale, string scale, or compactification scale.

<sup>&</sup>lt;sup>a</sup> C. T. Hill, Phys. Lett. B **135**, 47 (1984); Q. Shafi and C. Wetterich, Phys. Rev. Lett. **52**, 875 (1984). J. R. Ellis, C. Kounnas and D. V. Nanopoulos, Nucl. Phys. B **247**, 373 (1984); J. R. Ellis, K. Enqvist, D. V. Nanopoulos and K. Tamvakis, Phys. Lett. B **155**, 381 (1985); M. Drees, Phys. Lett. B **158**, 409 (1985).

In the GUTs with large number of fields, the renormalization effects significantly decrease the scale at which quantum gravity (or fundamental scale) becomes strong <sup>a</sup>

$$M_* = \frac{M_{\rm Pl}}{\Delta}, \ \Delta = \sqrt{1 + \frac{N}{12\pi}}, \ N = N_0 + N_{1/2} - 4N_1.$$

#### **Questions:**

- How to define the GUT scale?
- What is the gaugino mass relation? <sup>b</sup>

<sup>&</sup>lt;sup>a</sup> X. Calmet, S. D. H. Hsu and D. Reeb, Phys. Rev. Lett. 101, 171802 (2008).

<sup>&</sup>lt;sup>b</sup> J. R. Ellis, K. Enqvist, D. V. Nanopoulos and K. Tamvakis, Phys. Lett. B 155, 381 (1985).

**GmSUGRA:** two supersymmetry breaking fields S and T<sup>a</sup>:

$$f_i = S + \epsilon a_i T \; .$$

- mSUGRA if  $a_1 = a_2 = a_3$
- Gauge coupling relation and gaugino mass relation

$$\frac{a_1 - a_2}{\alpha_3} + \frac{a_3 - a_1}{\alpha_2} + \frac{a_2 - a_3}{\alpha_1} = 0.$$
$$\frac{(a_1 - a_2)M_3}{\alpha_3} + \frac{(a_3 - a_1)M_2}{\alpha_2} + \frac{(a_2 - a_3)M_1}{\alpha_1} = 0.$$

<sup>a</sup> TL and D. V. Nanopoulos, Phys. Lett. B **692**, 121 (2010) [arXiv:1002.4183 [hep-ph]].

#### **GmSUGRA:**

Gauge coupling relation

$$\frac{1}{\alpha_2} - \frac{1}{\alpha_3} = k \left( \frac{1}{\alpha_1} - \frac{1}{\alpha_3} \right) ,$$

Gaugino mass relation

$$\frac{M_2}{\alpha_2} - \frac{M_3}{\alpha_3} = k \left( \frac{M_1}{\alpha_1} - \frac{M_3}{\alpha_3} \right) ,$$

$$k \equiv \frac{a_2 - a_3}{a_1 - a_3} \,.$$

Index k might be obtained from the LHC and ILC.

| SU(5)     | $a_1$ | $a_2$ | $a_3$ | k        |
|-----------|-------|-------|-------|----------|
| 1         | 1     | 1     | 1     | $\infty$ |
| <b>24</b> | -1/2  | -3/2  | 1     | 5/3      |
| 75        | -5    | 3     | 1     | -1/3     |
| 200       | 10    | 2     | 1     | 1/9      |

Table 4:  $a_i$  and k for each irreducible representation in SU(5) models.

#### **Comments:**

The non-universal gaugino masses in gravity mediated supersymmetry breaking: <sup>a</sup>

$$\frac{M_3}{a_3\alpha_3} = \frac{M_2}{a_2\alpha_2} = \frac{M_1}{a_1\alpha_1}$$

# Differences from GmSUGRA: both gauge coupling relation and gaugino masses.

<sup>a</sup> G. Anderson, H. Baer, C. h. Chen and X. Tata, Phys. Rev. D **61**, 095005 (2000); N. Chamoun, C. S. Huang, C. Liu and X. H. Wu, Nucl. Phys. B **624**, 81 (2002); J. Chakrabortty and A. Raychaudhuri, Phys. Lett. B **673**, 57 (2009); S. P. Martin, Phys. Rev. D **79**, 095019 (2009); S. Bhattacharya and J. Chakrabortty, Phys. Rev. D **81**, 015007 (2010); N. Chamoun, C. S. Huang, C. Liu and X. H. Wu, arXiv:0909.2374 [hep-ph].

#### **F-Theory GUTs:** <sup>a</sup>

- The SU(5) gauge symmetry is broken down to the SM gauge symmetry by turning on the  $U(1)_Y$  flux <sup>b</sup>.
- The SO(10) gauge symmetry is broken down to the Flipped  $SU(5) \times U(1)_X$  gauge symmetry by turning on the  $U(1)_X$  flux <sup>c</sup>.
- The SO(10) gauge symmetry is broken down to the SU(3)<sub>C</sub> × SU(2)<sub>L</sub> × SU(2)<sub>R</sub> × U(1)<sub>B-L</sub> gauge symmetry by turning on the U(1)<sub>B-L</sub> flux <sup>d</sup>.

<sup>&</sup>lt;sup>a</sup>R. Donagi and M. Wijnholt, arXiv:0802.2969 [hep-th]; arXiv:0808.2223 [hep-th]; C. Beasley, J. J. Heckman and C. Vafa, JHEP **0901**, 058 (2009); JHEP **0901**, 059 (2009).

<sup>&</sup>lt;sup>b</sup>C. Beasley, J. J. Heckman and C. Vafa, JHEP **0901**, 059 (2009); T. Li, arXiv:0905.4563 [hep-th].

<sup>&</sup>lt;sup>c</sup>C. Beasley, J. J. Heckman and C. Vafa, JHEP **0901**, 059 (2009); J. Jiang, T. Li, D. V. Nanopoulos and D. Xie, Phys. Lett. B **677**, 322 (2009); arXiv:0905.3394 [hep-th].

<sup>&</sup>lt;sup>d</sup> A. Font and L. E. Ibanez, JHEP 0902, 016 (2009); T. Li, arXiv:0905.4563 [hep-th].

#### **Gauge kinetic functions:**

• SU(5) Models with  $U(1)_Y$  flux <sup>a</sup>

$$f_3 = \tau + \frac{1}{2}\alpha S$$
,  $f_2 = \tau + \frac{1}{2}(\alpha + 2)S$ ,  $f_1 = \tau + \frac{1}{2}\left(\alpha + \frac{6}{5}\right)S$ .

• SO(10) Models with  $U(1)_X$  flux <sup>b</sup>

$$f_5 = f_{1X} = \tau + \alpha S$$

<sup>a</sup> R. Donagi and M. Wijnholt, arXiv:0808.2223 [hep-th]; R. Blumenhagen, Phys. Rev. Lett. **102**, 071601 (2009). <sup>b</sup> J. Jiang, T. Li, D. V. Nanopoulos and D. Xie, arXiv:0905.3394 [hep-th]. • SO(10) Models with  $U(1)_{B-L}$  flux <sup>a</sup>

$$\begin{split} f_{SU(3)_C} &= f_{U(1)_{B-L}} = \tau + S , \ f_{SU(2)_L} = f_{SU(2)_R} = \tau , \\ f_{U(1)_Y} &= \frac{3}{5} f_{SU(2)_R} + \frac{2}{5} f_{U(1)_{B-L}} = \tau + \frac{2}{5} S . \end{split}$$

The index for SU(5) Models with  $U(1)_Y$  flux and SO(10) Models with  $U(1)_{B-L}$  flux is 5/3.

<sup>a</sup> T. Li, arXiv:0905.4563 [hep-th].

#### Solutions to the fermion mass problem in the GUTs <sup>a</sup>

- The high-dimensional operators in the superpotential.
- The high-dimensional operators in the Kähler potential.

<sup>&</sup>lt;sup>a</sup>C. Balazs, TL, D. V. Nanopoulos and F. Wang, JHEP **1102**, 096 (2011) [arXiv:1101.5423 [hep-ph]].

#### Supersymmetry breaking soft terms <sup>a</sup>

mSUGRA

$$W = \frac{1}{6} y^{ijk} \phi_i \phi_j \phi_k + \alpha \frac{S}{M_*} \left( \frac{1}{6} y^{ijk} \phi_i \phi_j \phi_k \right) ,$$

$$K = \phi_i^{\dagger} \phi_i + \beta \frac{S^{\dagger} S}{M_*^2} \phi_i^{\dagger} \phi_i .$$

The universal supersymmetry breaking scalar mass  $m_0$  and trilinear soft term A of

$$m_0^2 = \beta \frac{|F_S|^2}{M_*^2}, \quad A = \alpha \frac{F_S}{M_*}.$$

<sup>a</sup>C. Balazs, TL, D. V. Nanopoulos and F. Wang, JHEP **1009**, 003 (2010) [arXiv:1006.5559 [hep-ph]].

## **GmSUGRA: Superpotential and Kähler potential**

$$W = \frac{1}{6} y^{ijk} \phi_i \phi_j \phi_k + \frac{1}{6} \left( h^{ijk} \frac{\Phi}{M_*} \phi_i \phi_j \phi_k \right) + \alpha \frac{S}{M_*} \left( \frac{1}{6} y^{ijk} \phi_i \phi_j \phi_k \right) + \alpha' \frac{T}{M_*} \left( \frac{1}{6} y^{ijk} \frac{\Phi}{M_*} \phi_i \phi_j \phi_k \right) ,$$

$$K = \phi_i^{\dagger} \phi_i + \frac{1}{2} h' \phi_i^{\dagger} \left( \frac{\Phi}{M_*} + \frac{\Phi^{\dagger}}{M_*} \right) \phi_i + \beta \frac{S^{\dagger} S}{M_*^2} \phi_i^{\dagger} \phi_i$$
$$+ \frac{1}{2} \beta' \frac{T^{\dagger} T}{M_*^2} \phi_i^{\dagger} \left( \frac{\Phi}{M_*} + \frac{\Phi^{\dagger}}{M_*} \right) \phi_i .$$

SU(5) Model with an adjoint Higgs field  $\Phi_{\bf 24}$ 

#### Scalar masses:

• Group Theory

$$\overline{\mathbf{5}}\otimes\mathbf{5}~=~\mathbf{1}\oplus\mathbf{24}~,$$

 $\overline{10}\otimes 10 = 1\oplus 24\oplus 75$  .

• The  $\Phi_{24}$  VEV

$$\langle \Phi_{24} \rangle = v \sqrt{\frac{3}{5}} \operatorname{diag} \left( -\frac{1}{3}, -\frac{1}{3}, -\frac{1}{3}, \frac{1}{2}, \frac{1}{2} \right) ,$$

$$\langle \Phi_{24} \rangle = v \sqrt{\frac{3}{5}} \operatorname{diag}(\underbrace{-\frac{2}{3}, \cdots, -\frac{2}{3}}_{3}, \underbrace{\frac{1}{6}, \cdots, \frac{1}{6}}_{6}, 1).$$

# **Supersymmetry breaking scalar masses:**

$$\begin{split} m_{\widetilde{Q}_{i}}^{2} &= (m_{0}^{U})^{2} + \sqrt{\frac{3}{5}}\beta_{10}^{\prime}\frac{1}{6}(m_{0}^{N})^{2} , \ m_{\widetilde{U}_{i}^{c}}^{2} &= (m_{0}^{U})^{2} - \sqrt{\frac{3}{5}}\beta_{10}^{\prime}\frac{2}{3}(m_{0}^{N})^{2} , \\ m_{\widetilde{E}_{i}^{c}}^{2} &= (m_{0}^{U})^{2} + \sqrt{\frac{3}{5}}\beta_{10}^{\prime}(m_{0}^{N})^{2} , \ m_{\widetilde{L}_{i}}^{2} &= (m_{0}^{U})^{2} - \sqrt{\frac{3}{5}}\beta_{5}^{\prime}\frac{1}{2}(m_{0}^{N})^{2} , \\ m_{\widetilde{D}_{i}^{c}}^{2} &= (m_{0}^{U})^{2} + \sqrt{\frac{3}{5}}\beta_{5}^{\prime}\frac{1}{3}(m_{0}^{N})^{2} , \ m_{\widetilde{L}_{i}}^{2} &= (m_{0}^{U})^{2} - \sqrt{\frac{3}{5}}\beta_{5}^{\prime}\frac{1}{2}(m_{0}^{N})^{2} , \\ m_{\widetilde{H}_{u}}^{2} &= (m_{0}^{U})^{2} + \sqrt{\frac{3}{5}}\beta_{Hu}^{\prime}\frac{1}{2}(m_{0}^{N})^{2} , \ m_{\widetilde{H}_{d}}^{2} &= (m_{0}^{U})^{2} - \sqrt{\frac{3}{5}}\beta_{Hd}^{\prime}\frac{1}{2}(m_{0}^{N})^{2} , \end{split}$$

where

$$(m_0^U)^2 \equiv \frac{\beta}{M_*^2} F_S^* F_S , \ (m_0^N)^2 = \frac{v}{M_*^3} F_T^* F_T .$$

The sfermion mass relations at the GUT scale

$$3m_{\widetilde{D}_{i}^{c}}^{2} + 2m_{\widetilde{L}_{i}}^{2} = 4m_{\widetilde{Q}_{i}}^{2} + m_{\widetilde{U}_{i}^{c}}^{2} = 6m_{\widetilde{Q}_{i}}^{2} - m_{\widetilde{E}_{i}^{c}}^{2} = 2m_{\widetilde{E}_{i}^{c}}^{2} + 3m_{\widetilde{U}_{i}^{c}}^{2}.$$

Choosing slepton masses as input parameters, we can parametrize the squark masses as follows

$$\begin{split} m_{\widetilde{Q}_i}^2 &=\; \frac{5}{6} (m_0^U)^2 + \frac{1}{6} m_{\widetilde{E}_i^c}^2 \;, \\ m_{\widetilde{U}_i^c}^2 &=\; \frac{5}{3} (m_0^U)^2 - \frac{2}{3} m_{\widetilde{E}_i}^2 \;, \\ m_{\widetilde{D}_i^c}^2 &=\; \frac{5}{3} (m_0^U)^2 - \frac{2}{3} m_{\widetilde{L}_i}^2 \;. \end{split}$$

If the slepton masses are much smaller than the universal scalar mass, we obtain  $2m_{\widetilde{Q}_i}^2 \sim m_{\widetilde{U}_i^c}^2 \sim m_{\widetilde{D}_i^c}^2$ .

#### **Triliear soft A terms:**

• Group Theory

$$\begin{array}{rll} \mathbf{10}\otimes\mathbf{10}\otimes\mathbf{5}&=&(\mathbf{\overline{5}}\oplus\overline{\mathbf{45}}\oplus\overline{\mathbf{50}})\otimes\mathbf{5}\\ &=&(\mathbf{1}\oplus\mathbf{24})\oplus(\mathbf{24}\oplus\mathbf{75}\oplus\mathbf{126})\oplus(\mathbf{75}\oplus\mathbf{175}')\ ,\\ \mathbf{10}\otimes\mathbf{\overline{5}}\otimes\mathbf{\overline{5}}&=&\mathbf{10}\otimes(\overline{\mathbf{10}}\oplus\overline{\mathbf{15}})=(\mathbf{1}\oplus\mathbf{24}\oplus\mathbf{75})\oplus(\mathbf{24}\oplus\overline{\mathbf{126}})\ .\end{array}$$

• Superpotential

$$W \supset \left(h^{Ui} \epsilon^{mnpql}(F'_{i})_{mn}(F'_{i})_{pq}(h')_{k}(\Phi_{24})^{k}_{l} + h'^{Ui} \epsilon^{mnpkl}(F'_{i})_{mn}(F'_{i})_{pq}(h')_{k}(\Phi_{24})^{q}_{l} + h^{DEi}(F'_{i})_{mn}(\overline{f}'_{i} \otimes \overline{h}')^{ml}_{Asym}(\Phi_{24})^{n}_{l}\right) \\ + h^{DEi}(F'_{i})_{mn}(\overline{f}'_{i} \otimes \overline{h}')^{ml}_{Sym}(\Phi_{24})^{n}_{l} + h'^{DEi}(F'_{i})_{mn}(\overline{f}'_{i} \otimes \overline{h}')^{ml}_{Asym}(\Phi_{24})^{n}_{l} \\ + q'^{Ui} \epsilon^{mnpkl}(F'_{i})_{mn}(F'_{i})_{pq}(h')_{k}(\Phi_{24})^{q}_{l} + y^{DEi}(F'_{i})_{mn}(\overline{f}'_{i} \otimes \overline{h}')^{ml}_{Sym}(\Phi_{24})^{n}_{l} \\ + y'^{DEi}(F'_{i})_{mn}(\overline{f}'_{i} \otimes \overline{h}')^{ml}_{Asym}(\Phi_{24})^{n}_{l} \right) .$$

• Yukawa couplings

$$W \supset \frac{v}{M_*} \sqrt{\frac{3}{5}} \left( -2h^{Ui}Q_iU_i^cH_u - h'^{Ui}Q_iU_i^cH_u - \frac{1}{6}h'^{DEi}Q_iD_i^cH_d - h'^{DEi}L_iE_i^cH_d \right) .$$

• Soft A terms

$$-\mathcal{L} \supset \alpha' \frac{F_T v}{M_*^2} \sqrt{\frac{3}{5}} \left( -2y^{Ui} \widetilde{Q}_i \widetilde{U}_i^c H_u - y'^{Ui} \widetilde{Q}_i \widetilde{U}_i^c H_u - \frac{1}{6} y'^{DEi} \widetilde{Q}_i \widetilde{D}_i^c H_d - y'^{DEi} \widetilde{L}_i \widetilde{E}_i^c H_d \right) .$$

#### • Soft A terms

$$A_U = A_0^U + (2\gamma_U + \gamma'_U)A_0^N ,$$
  

$$A_D = A_0^U + \frac{1}{6}\gamma_D A_0^N ,$$
  

$$A_E = A_0^U + \gamma_D A_0^N .$$

 $A_U$ ,  $A_D$  and  $A_E$  can be free parameters in general in the GmSUGRA.

# Supersymmetry breaking soft terms in SU(5) model with an adjoint Higgs field $\Phi_{\mathbf{24}}$

- Two gaugino masses  $M_i$ .
- Five sclar masses:  $m_0^U$ ,  $m_{\widetilde{E}_i^c}$ ,  $m_{\widetilde{L}_i}$ ,  $m_{\widetilde{H}_u}^2$  and  $m_{\widetilde{H}_d}^2$ .
- Three trilinear soft terms:  $A_U$ ,  $A_D$ , and  $A_E$ .

#### Gauge coupling unification:

$$\frac{1}{\alpha_2} - \frac{1}{\alpha_3} = \frac{5}{3} \left( \frac{1}{\alpha_1} - \frac{1}{\alpha_3} \right)$$

- Worst case: the Higgsinos are light while the gluinos are heavy.
- Assumption: the masses for the sleptons, bino, winos and Higgsinos are universersal, and the masses for the squarks and gluinos are universal.
- Proof: for the renormalization scale from the slepton mass to the squark mass, the one-loop beta functions for U(1)<sub>Y</sub>, SU(2)<sub>L</sub> and SU(3)<sub>C</sub> are respectively b<sub>1</sub> = 27/5, b<sub>2</sub> = -4/3, b<sub>3</sub> = -7. Because b<sub>1</sub> b<sub>2</sub> = 101/15 is larger than b<sub>2</sub> b<sub>3</sub> = 17/3, the gauge coupling relation at the GUT scale can be realized properly.

#### **Supersymmetry breaking soft terms in GmSUGRA:**

• Gaugino Masses

$$M_1 = M_1, \ M_2 = M_2, \ M_3 = \frac{5}{2}M_1 - \frac{3}{2}M_2.$$

• Scalar masses:

$$\begin{split} m_{\widetilde{Q}_i}^2 &=\; \frac{5}{6} (m_0^U)^2 + \frac{1}{6} m_{\widetilde{E}_i^c}^2 \;, \\ m_{\widetilde{U}_i^c}^2 &=\; \frac{5}{3} (m_0^U)^2 - \frac{2}{3} m_{\widetilde{E}_i}^2 \;, \\ m_{\widetilde{D}_i^c}^2 &=\; \frac{5}{3} (m_0^U)^2 - \frac{2}{3} m_{\widetilde{L}_i}^2 \;. \end{split}$$

• Trilinear soft terms:  $A_U = A_D$ ,  $A_E$ 

#### **Scenarios:**

- Scenario I: RPC + WMAP
- Scenario II: RPC + Multicomponent DM
- Scenario III: RPV



Figure 5: Scenario I:  $\chi^2_{min} = 19.44$ . Red pentagram: best-fitted point; green: 2  $\sigma$  region; purple: 1  $\sigma$  region



Figure 6: Scenario II:  $\chi^2_{min} = 17.44$ .



Figure 7: Scenario III:  $\chi^2_{min} = 17.27$ .

|               | ()'1')           | 20    | 15    |                                            |      |        |      |
|---------------|------------------|-------|-------|--------------------------------------------|------|--------|------|
|               | 212              | 205   | 10    | $\widetilde{e}_R/\widetilde{\mu}_R$        | 483  | 461    | 268  |
|               | 359              | 385   | 160   | $\widetilde{e}_L/\widetilde{\mu}_L$        | 134  | 135    | 148  |
| $M_1$         | -560             | 795   | 579   | $\widetilde{\tau_1}$                       | 121  | 132    | 146  |
| $M_2$         | 312              | 286   | 312   | $\widetilde{\tau}_{2}$                     | 476  | 460    | 266  |
| $M_3$         | -1864            | 1557  | 981   | $\widetilde{t}$                            | 2264 | 2912   | 1754 |
| $A_0$         | 846              | -489  | -1186 | $\iota_1$                                  | 3304 | 2813   | 1/34 |
| $A_E$         | -490             | -227  | -56   | $\begin{array}{c} t_2 \\ \sim \end{array}$ | 3486 | 2944   | 1903 |
| $A_{\lambda}$ | 2743             | -52   | -25   |                                            | 3385 | 2848   | 1822 |
|               | 1001             | _0.03 | _17   | $\widetilde{b}_2$                          | 4666 | 4054   | 2744 |
|               |                  | -0.75 | -1/   | $\widetilde{u}_R/\widetilde{c}_R$          | 4689 | 4073   | 2763 |
| P P           | aram. at $M_{S}$ | USY:  | 0.707 | $\widetilde{u}_L/\widetilde{c}_L$          | 4076 | 3504   | 2347 |
| $\lambda$     | 0.429718         | 0.477 | 0.527 | $\widetilde{d}_R/\widetilde{s}_R$          | 4704 | 4083   | 2767 |
| κ             | 0.189889         | 0.276 | 0.38  | $\widetilde{d_I}/\widetilde{s_I}$          | 4077 | 3505   | 2349 |
| $\tan\beta$   | 7.39249          | 4.86  | 5.39  | Phe                                        | no   |        |      |
| $\mu_{eff}$   | 130              | 135   | 160   |                                            | 1.00 | 1 4 2  | 1.42 |
|               | Spectrum:(G      | eV)   |       | $R_{\gamma\gamma}$                         | 1.22 | 1.43   | 1.43 |
| $H_1^0$       | 108              | 119   | 118   | $\frac{R_{\gamma\gamma}^{gg}}{1-1-1-1}$    | 1.24 | 1.48   | 1.48 |
| $H_2^0$       | 126.3            | 124.5 | 125   | $R_{\gamma\gamma}^{VBF}$                   | 1.17 | 1.2    | 1.18 |
| <u> </u>      | 1013             | 6/8   | 688   | $R_{VV}$                                   | 1.06 | 0.95   | 0.92 |
| <u> </u>      | 1013             |       | 000   | $R_{Vbb}$                                  | 0.44 | 0.02   | 0.03 |
| $A_1$         | 45               | 104   | 233   | $R_{bb}$                                   | 0.46 | 0.02   | 0.04 |
| $A_2$         | 1012             | 644   | 684   | B                                          | 0.46 | 6 7e-6 | 0.03 |

|               | 1.88383    | 27.7031     | 29.7430   | $\widetilde{e}_R/\widetilde{\mu}_R$      | 210.387  | 127.992  |
|---------------|------------|-------------|-----------|------------------------------------------|----------|----------|
| $M_E$         | 332.69     | 184.266     | 325.658   | $\widetilde{e}_L/\widetilde{\mu}_L$      | 235.435  | 136.779  |
| $M_1$         | 347.521    | 274.159     | 327.307   | $\widetilde{	au_1}$                      | 98.252   | 103.165  |
| $M_2$         | 241.184    | 203.472     | 192.406   | $\widetilde{\tau}_{0}$                   | 226 631  | 147 028  |
| $M_3$         | 507.027    | 380.19      | 529.658   | $\widetilde{\tau}_{2}$                   | 578 747  | 516 556  |
| $A_0$         | -2219.16   | -2178.56    | -2458.82  | $\sim \frac{\iota_1}{\widetilde{\iota}}$ | <u> </u> | 740.070  |
| $A_E$         | -8974.16   | -2434.99    | -7497.61  | $1$ $t_2$ $\tilde{t}_2$                  | 888.68   | /48.272  |
| $A_{\lambda}$ | -626.151   | -696.892    | -861.797  | $b_1$                                    | 837.829  | 680.188  |
|               | -0.0182404 | -0 00906699 | -0.027    |                                          | 1999.49  | 2071.85  |
|               | Doctor     | ot 1/       | 0.027     | $\widetilde{u}_R/\widetilde{c}_R$        | 2023.55  | 2087.01  |
|               | Param      |             | 0.6000    | $\widetilde{u}_L/\widetilde{c}_L$        | 1595.7   | 1559.77  |
| λ             | 0.630814   | 0.631714    | 0.62998   | $\widetilde{d}_R/\widetilde{s}_R$        | 2022.4   | 2087.34  |
| ĸ             | 0.0734611  | 0.14492     | 0.0676808 | $\widetilde{d}_L/\widetilde{s}_L$        | 1596.86  | 1560.92  |
| $\tan\beta$   | 2.04129    | 1.93553     | 1.88946   |                                          | Pheno    |          |
| $\mu_{eff}$   | 213.478    | 199.934     | 222.791   | B                                        | 1 2/077  | 1 28008  |
|               | Spect      | rum:(GeV)   |           | Daa                                      | 1.24077  | 1.20900  |
| $H_1^0$       | 83.3888    | 96.8521     | 96.8172   | $R_{\gamma\gamma}^{gg}$                  | 1.24361  | 1.304    |
| $H_2^0$       | 125.248    | 126.997     | 126.681   | $-\frac{R_{\gamma\gamma}^{VBF}}{\Gamma}$ | 1.22564  | 1.20442  |
| $H_0^0$       | 527 913    | 474 168     | 528 363   |                                          | 1.02234  | 1.0456   |
| 3             | 117 200    | 1/8 202     | 97 6905   | $R_{Vbb}$                                | 0.965538 | 0.797919 |
|               | 522.546    | 140.303     | 522,420   |                                          | 0.97746  | 0.854005 |
| $A_2$         | 552.546    | 476.502     | 555.429   | - R                                      | 0 976746 | 0 850748 |

# CONCLUSION

### Supersymmetry:

- Consistent with all the current experiments, especially the Higgs boson masses and decays.
- Consistent with the string model building.
- With *R*-parity violation, the supersymmetric SMs are still an elegant and natural solution to the gauge hierarchy problem.

#### The Implications of the LHC Higgs Searches in the Supersymmetric Standard Models

Tianjun Li<sup>1</sup>

<sup>1</sup>State Key Laboratory of Theoretical Physics and Kavli Institute for Theoretical Physics China (KITPC), Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, P. R. China

#### Abstract

The particle spectra for both the NMSSM and the NMSSM with EWSUSY for Scenarios I, II and III.

PACS numbers:

| Point                               | $\mathrm{I}\chi^2_{min}$ | IA     | IB       | IC     | Point                                           | $I\chi^2_{min}$ | IA    | IB    | IC     |
|-------------------------------------|--------------------------|--------|----------|--------|-------------------------------------------------|-----------------|-------|-------|--------|
| $M_0$                               | 264                      | 294    | 562      | 249    | $\widetilde{t_1}$                               | 294             | 210   | 186   | 257    |
| $M_{1/2}$                           | 489                      | 484    | 624      | 571    | $\widetilde{t}_2$                               | 822             | 810   | 1026  | 920    |
| aneta                               | 2.436                    | 2.851  | 2.910    | 3.293  | $\widetilde{t}$                                 | 873             | 837   | 1042  | 955    |
| λ                                   | 0.601                    | 0.550  | 0.564    | 0.536  | $\widetilde{b}_1$                               | 783             | 768   | 994   | 880    |
| $\kappa$                            | 0.245                    | 0.249  | 0.268    | 0.243  | $\widetilde{b}_2$                               | 983             | 979   | 1296  | 1114   |
| $A_0$                               | -1180                    | -1253  | -1779    | -1441  | $\widetilde{u}_R/\widetilde{c}_R$               | 1053            | 1052  | 1397  | 1197   |
| $A_{\lambda}$                       | -315                     | -230   | -628     | -193   | $\widetilde{u}_L/\widetilde{c}_L$               | 1059            | 1057  | 1398  | 1206   |
| $A_{\kappa}$                        | -1.904                   | -2.028 | -218.408 | -1.900 | $\widetilde{d}_R/\widetilde{s}_R$               | 1014            | 1013  | 1342  | 1153   |
| $\mu_{\mathrm{eff}}$                | 130                      | 124    | 123      | 128    | $\widetilde{d}_L/\widetilde{s}_L$               | 1061            | 1059  | 1399  | 1208   |
| $M_1$                               | 207                      | 204    | 266      | 242    | $H_1^0$                                         | 108.5           | 95.5  | 111.7 | 91.7   |
| $M_2$                               | 384                      | 380    | 493      | 449    | $H_2^0$                                         | 125.5           | 125.4 | 125.2 | 124.2  |
| $M_3$                               | 1091                     | 1081   | 1368     | 1259   | $H_3^0$                                         | 359.7           | 396.3 | 385.6 | 461.1  |
| $\widetilde{\chi}_1^0$              | 75                       | 70     | 77       | 76     | $A_1$                                           | 99.6            | 123.8 | 91.7  | 138.4  |
| $\widetilde{\chi}^0_2$              | 163                      | -156   | -156     | -158   | $A_2$                                           | 353.4           | 390.0 | 377.9 | 455.9  |
| $\widetilde{\chi}_3^0$              | -168                     | 163    | 172      | 171    | $H^{\pm}$                                       | 343.9           | 383.2 | 371.3 | 450.2  |
| $\widetilde{\chi}_4^0$              | 219                      | 216    | 273      | 250    | $\Omega\hbar^2$                                 | 0.110           | 0.104 | 0.103 | 0.109  |
| $\widetilde{\chi}_5^0$              | 415                      | 410    | 521      | 475    | $\Delta_{a_{\mu}} [10^{-10}]$                   | 2.317           | 2.586 | 1.157 | 1.823  |
| $\widetilde{\chi}_1^{\pm}$          | 114                      | 109    | 113      | 117    | $\sigma^{si}(p) \ [10^{-10} \text{ pb}]$        | 7.468           | 1.137 | 3.208 | 39.683 |
| $\widetilde{\chi}_2^{\pm}$          | 414                      | 409    | 520      | 475    | $\operatorname{Br}^{(b \to s\gamma)} [10^{-4}]$ | 3.342           | 2.633 | 2.714 | 2.747  |
| $\widetilde{g}$                     | 1134                     | 1125   | 1436     | 1305   | $\Delta_{ m FT}$                                | 62.7            | 74.0  | 109.3 | 101.5  |
| $\widetilde{ u}_{e/\mu}$            | 457                      | 472    | 741      | 497    | $R_{2\rm VBF}^{\gamma\gamma}$                   | 1.48            | 1.60  | 1.75  | 1.46   |
| $\widetilde{ u}_{	au}$              | 456                      | 471    | 740      | 496    | $R_2^{\gamma\gamma}$                            | 1.58            | 1.43  | 1.45  | 1.31   |
| $\widetilde{e}_R/\widetilde{\mu}_R$ | 178                      | 216    | 482      | 126    | $R_2^{WW}$                                      | 1.25            | 1.10  | 1.07  | 1.09   |
| $\widetilde{e}_L/\widetilde{\mu}_L$ | 461                      | 477    | 744      | 502    | $R_2^{ZZ}$                                      | 1.25            | 1.10  | 1.07  | 1.09   |
| $\widetilde{	au}_1$                 | 176                      | 213    | 479      | 116    | $R_2^{Vbb}$                                     | 0.59            | 0.59  | 0.50  | 0.70   |
| $\widetilde{	au}_2$                 | 461                      | 476    | 744      | 501    | $R_2^{bb}$                                      | 0.63            | 0.53  | 0.41  | 0.63   |
| $\chi^2$                            | 21.16                    | 24.85  | 25.92    | 23.37  | $R_2^{\tau\tau}$                                | 0.62            | 0.53  | 0.41  | 0.62   |

TABLE I: Particle spectra (in GeV) and parameters for benchmark points in Scenario I.

| Point                               | $\mathrm{II}\chi^2_{min}$ | IIA    | IIB      | IIC    | Point                                           | $\mathrm{II}\chi^2_{min}$ | IIA    | IIB    | IIC    |
|-------------------------------------|---------------------------|--------|----------|--------|-------------------------------------------------|---------------------------|--------|--------|--------|
| $M_0$                               | 454                       | 208    | 576      | 279    | $\widetilde{t_1}$                               | 513                       | 157    | 184    | 432    |
| $M_{1/2}$                           | 673                       | 413    | 528      | 527    | $\widetilde{t}_2$                               | 1126                      | 700    | 912    | 895    |
| $\tan\beta$                         | 3.267                     | 2.518  | 2.468    | 1.820  | $\widetilde{t}$                                 | 1237                      | 717    | 930    | 994    |
| $\lambda$                           | 0.452                     | 0.617  | 0.582    | 0.584  | $\widetilde{b}_1$                               | 1093                      | 654    | 880    | 866    |
| κ                                   | 0.214                     | 0.295  | 0.247    | 0.172  | $\widetilde{b}_2$                               | 1348                      | 835    | 1153   | 1058   |
| $A_0$                               | -1520                     | -1090  | -1519    | -986   | $\widetilde{u}_R/\widetilde{c}_R$               | 1434                      | 898    | 1240   | 1127   |
| $A_{\lambda}$                       | -296                      | -248   | -618     | -380   | $\widetilde{u}_L/\widetilde{c}_L$               | 1445                      | 903    | 1237   | 1135   |
| $A_{\kappa}$                        | -1.354                    | -1.049 | -253.408 | -1.707 | $\widetilde{d}_R/\widetilde{s}_R$               | 1384                      | 865    | 1192   | 1086   |
| $\mu_{\mathrm{eff}}$                | 130                       | 129    | 118      | 123    | $\widetilde{d}_L/\widetilde{s}_L$               | 1446                      | 905    | 1239   | 1136   |
| $M_1$                               | 287                       | 173    | 224      | 224    | $H_1^0$                                         | 115.2                     | 106.5  | 99.7   | 98.0   |
| $M_2$                               | 530                       | 324    | 416      | 416    | $H_2^0$                                         | 124.4                     | 126.2  | 124.7  | 126.0  |
| $M_3$                               | 1467                      | 933    | 1169     | 1173   | $H_{3}^{0}$                                     | 440.5                     | 363.1  | 332.7  | 290.1  |
| $\widetilde{\chi}_1^0$              | 87                        | 70     | 69       | 74     | $A_1$                                           | 66.1                      | 145.4  | 103.3  | 74.6   |
| $\widetilde{\chi}_2^0$              | -152                      | -166   | -156     | 133    | $A_2$                                           | 435.0                     | 355.4  | 325.3  | 288.4  |
| $\widetilde{\chi}_3^0$              | 167                       | 170    | 158      | -166   | $H^{\pm}$                                       | 433.6                     | 345.6  | 316.3  | 275.7  |
| $\widetilde{\chi}_4^0$              | 292                       | 194    | 233      | 233    | $\Omega\hbar^2$                                 | 0.038                     | 0.001  | 0.072  | 0.070  |
| $\widetilde{\chi}_5^0$              | 557                       | 358    | 446      | 444    | $\Delta_{a_{\mu}} [10^{-10}]$                   | 1.385                     | 3.410  | 1.100  | 1.513  |
| $\widetilde{\chi}_1^{\pm}$          | 122                       | 107    | 104      | 107    | $\sigma^{si}(p) \ [10^{-10} \text{ pb}]$        | 59.671                    | 39.947 | 22.116 | 28.064 |
| $\widetilde{\chi}_2^{\pm}$          | 556                       | 357    | 446      | 444    | $\operatorname{Br}^{(b \to s\gamma)} [10^{-4}]$ | 3.553                     | 2.294  | 2.914  | 4.123  |
| $\widetilde{g}$                     | 1529                      | 968    | 1235     | 1218   | $\Delta_{ m FT}$                                | 130.4                     | 48.8   | 75.7   | 59.6   |
| $\widetilde{\nu}_{e/\mu}$           | 680                       | 377    | 710      | 489    | $R_{2\rm VBF}^{\gamma\gamma}$                   | 1.08                      | 1.68   | 1.53   | 1.24   |
| $\widetilde{\nu}_{	au}$             | 679                       | 377    | 709      | 489    | $R_2^{\gamma\gamma}$                            | 1.34                      | 1.45   | 1.42   | 1.42   |
| $\widetilde{e}_R/\widetilde{\mu}_R$ | 376                       | 122    | 510      | 191    | $R_2^{WW}$                                      | 0.89                      | 1.09   | 1.10   | 1.09   |
| $\widetilde{e}_L/\widetilde{\mu}_L$ | 683                       | 383    | 713      | 492    | $R_2^{ZZ}$                                      | 0.89                      | 1.09   | 1.10   | 1.09   |
| $\widetilde{	au}_1$                 | 372                       | 118    | 509      | 190    | $R_2^{Vbb}$                                     | 0.01                      | 0.57   | 0.72   | 0.65   |
| $\widetilde{	au}_2$                 | 683                       | 383    | 712      | 492    | $R_2^{bb}$                                      | 0.01                      | 0.49   | 0.67   | 0.74   |
| $\chi^2$                            | 19.35                     | 24.19  | 23.86    | 23.70  | $R_2^{\tau\tau}$                                | 0.00                      | 0.49   | 0.66   | 0.73   |

TABLE II: Particle spectra (in GeV) and parameters for benchmark points in Scenario II.

| Point                               | $\mathrm{III}\chi^2_{min}$ | IIIA     | IIIB   | IIIC                   | Point                                           | ${\rm III}\chi^2_{min}$ | IIIA  | IIIB  | IIIC  |
|-------------------------------------|----------------------------|----------|--------|------------------------|-------------------------------------------------|-------------------------|-------|-------|-------|
| M <sub>0</sub>                      | 352                        | 431      | 344    | 337                    | $\widetilde{t_1}$                               | 365                     | 252   | 184   | 391   |
| $M_{1/2}$                           | 489                        | 326      | 500    | 441                    | $\widetilde{t}_2$                               | 850                     | 647   | 832   | 795   |
| $\tan\beta$                         | 2.341                      | 1.853    | 2.731  | 2.039                  | $\widetilde{t}$                                 | 925                     | 694   | 852   | 886   |
| $\lambda$                           | 0.604                      | 0.589    | 0.623  | 0.614                  | $\widetilde{b}_1$                               | 814                     | 610   | 793   | 760   |
| κ                                   | 0.295                      | 0.364    | 0.288  | 0.318                  | $\widetilde{b}_2$                               | 1012                    | 778   | 1020  | 929   |
| $A_0$                               | -1063                      | -372     | -1322  | -620                   | $\widetilde{u}_R/\widetilde{c}_R$               | 1078                    | 827   | 1097  | 985   |
| $A_{\lambda}$                       | -329                       | -161     | -267   | $-9.93 \times 10^{-6}$ | $\widetilde{u}_L/\widetilde{c}_L$               | 1083                    | 823   | 1101  | 990   |
| $A_{\kappa}$                        | -128.134                   | -628.214 | -0.877 | -1.459                 | $\widetilde{d}_R/\widetilde{s}_R$               | 1039                    | 798   | 1056  | 952   |
| $\mu_{\mathrm{eff}}$                | 144                        | 162      | 150    | 166                    | $\widetilde{d}_L/\widetilde{s}_L$               | 1085                    | 825   | 1103  | 992   |
| $M_1$                               | 207                        | 136      | 212    | 186                    | $H_1^0$                                         | 120.5                   | 114.3 | 119.6 | 116.6 |
| $M_2$                               | 384                        | 255      | 393    | 346                    | $H_2^0$                                         | 126.9                   | 124.6 | 124.9 | 125.7 |
| $M_3$                               | 1090                       | 745      | 1114   | 990                    | $H_3^0$                                         | 367.8                   | 342.7 | 436.6 | 382.5 |
| $\widetilde{\chi}_1^0$              | 91                         | 86       | 92     | 107                    | $A_1$                                           | 154.3                   | 300.6 | 157.1 | 247.6 |
| $\widetilde{\chi}_2^0$              | -177                       | 160      | -184   | 195                    | $A_2$                                           | 360.0                   | 335.1 | 430.1 | 376.3 |
| $\widetilde{\chi}_3^0$              | 187                        | -189     | 191    | -197                   | $H^{\pm}$                                       | 352.6                   | 330.2 | 421.7 | 369.3 |
| $\widetilde{\chi}_4^0$              | 222                        | 232      | 228    | 221                    | $\Omega\hbar^2$                                 | ×                       | ×     | ×     | ×     |
| $\widetilde{\chi}_5^0$              | 417                        | 310      | 425    | 384                    | $\Delta_{a_{\mu}} [10^{-10}]$                   | 1.893                   | 1.587 | 2.207 | 1.848 |
| $\widetilde{\chi}_1^{\pm}$          | 126                        | 122      | 133    | 141                    | $\sigma^{si}(p) \ [10^{-10} \text{ pb}]$        | ×                       | ×     | ×     | ×     |
| $\widetilde{\chi}_2^{\pm}$          | 416                        | 306      | 425    | 383                    | $\operatorname{Br}^{(b \to s\gamma)} [10^{-4}]$ | 3.586                   | 3.413 | 2.560 | 3.659 |
| $\widetilde{g}$                     | 1138                       | 796      | 1162   | 1035                   | $\Delta_{ m FT}$                                | 59.5                    | 27.0  | 68.4  | 44.1  |
| $\widetilde{ u}_{e/\mu}$            | 513                        | 502      | 514    | 475                    | $R_{2\rm VBF}^{\gamma\gamma}$                   | 0.88                    | 0.93  | 1.60  | 1.16  |
| $\widetilde{\nu}_{	au}$             | 512                        | 502      | 514    | 475                    | $R_2^{\gamma\gamma}$                            | 1.34                    | 1.46  | 1.41  | 1.42  |
| $\widetilde{e}_R/\widetilde{\mu}_R$ | 291                        | 395      | 273    | 289                    | $R_2^{WW}$                                      | 0.81                    | 0.95  | 1.08  | 1.10  |
| $\widetilde{e}_L/\widetilde{\mu}_L$ | 517                        | 505      | 519    | 479                    | $R_2^{ZZ}$                                      | 0.81                    | 0.95  | 1.08  | 1.10  |
| $\widetilde{\tau}_1$                | 289                        | 395      | 270    | 288                    | $R_2^{Vbb}$                                     | 0.01                    | 0.10  | 0.55  | 0.37  |
| $\widetilde{	au}_2$                 | 517                        | 505      | 518    | 479                    | $R_2^{bb}$                                      | 0.02                    | 0.16  | 0.48  | 0.46  |
| $\chi^2$                            | 19.67                      | 21.31    | 23.85  | 20.53                  | $R_2^{\tau\tau}$                                | 0.00                    | 0.14  | 0.47  | 0.44  |

TABLE III: Particle spectra (in GeV) and parameters for benchmark points in Scenario III.

| $\chi^2_{min}$ Points:                                          | Ι              | II         | III   | $\sim^2$ Dointai                                     | т     | П       | TTT   |
|-----------------------------------------------------------------|----------------|------------|-------|------------------------------------------------------|-------|---------|-------|
| Param.                                                          | at $M_{GUT}$   | :(GeV      | )     | $\chi_{min}$ rounds.                                 | 1     | 11      | 111   |
| M <sub>0</sub>                                                  | 2572.75        | 2291       | 1606  | $     \nu_{e/\mu} $                                  | 111   | 113     | 128   |
| M <sub>L</sub>                                                  | 272            | 130        | 15    | $\widetilde{\nu}_{\tau}$                             | 95    | 110     | 126   |
| $M_E$                                                           | 359            | 385        | 160   | $\widetilde{e}_R/\widetilde{\mu}_R$                  | 483   | 461     | 268   |
| <br>                                                            | -560           | 795        | 579   | $\widetilde{e}_L/\widetilde{\mu}_L$                  | 134   | 135     | 148   |
|                                                                 | 312            | 286        | 312   | $\widetilde{\tau}_1$                                 | 121   | 132     | 146   |
| <br>                                                            | -1864          | 1557       | 981   | $\widetilde{	au}_2$                                  | 476   | 460     | 266   |
|                                                                 | 846            | 180        | 1186  | $\widetilde{t_1}$                                    | 3364  | 2813    | 1754  |
|                                                                 | 400            | -409       | -1100 | $\widetilde{t}_2$                                    | 3486  | 2944    | 1903  |
|                                                                 | -490           | -221       | -50   | $\widetilde{b}_1$                                    | 3385  | 2848    | 1822  |
| $A_{\lambda}$                                                   | 2743           | -52        | -25   | $\widetilde{b}_2$                                    | 4666  | 4054    | 2744  |
| $A_{\kappa}$                                                    | 1091           | -0.93      | -17   | $\widetilde{u}_R/\widetilde{c}_R$                    | 4689  | 4073    | 2763  |
| Parar                                                           | m. at $M_{Sl}$ | USY:       |       | $\widetilde{u}_L/\widetilde{c}_L$                    | 4076  | 3504    | 2347  |
| λ                                                               | 0.429718       | 0.477      | 0.527 | $\widetilde{d}_R/\widetilde{s}_R$                    | 4704  | 4083    | 2767  |
| κ                                                               | 0.189889       | 0.276      | 0.38  | $\widetilde{d}_L/\widetilde{s}_L$                    | 4077  | 3505    | 2349  |
| $\tan\beta$                                                     | 7.39249        | 4.86       | 5.39  | Phen                                                 | 0.    |         |       |
| $\mu_{eff}$                                                     | 130            | 135        | 160   | Bee                                                  | 1.22  | 1.43    | 1.43  |
| Spee                                                            | ctrum:(Ge      | eV)        |       | B <sup>gg</sup>                                      | 1 24  | 1 48    | 1 48  |
| $H_{1}^{0}$                                                     | 108            | 119        | 118   | RVBF                                                 | 1.21  | 1.10    | 1.10  |
| $H_{2}^{0}$                                                     | 126.3          | 124.5      | 125   | $P_{\gamma\gamma}$                                   | 1.17  | 0.05    | 0.02  |
| $H_{3}^{0}$                                                     | 1013           | 648        | 688   |                                                      | 1.00  | 0.95    | 0.92  |
| $A_1$                                                           | 45             | 164        | 235   | R <sub>Vbb</sub>                                     | 0.44  | 0.02    | 0.03  |
| $A_2$                                                           | 1012           | 644        | 684   | R <sub>bb</sub>                                      | 0.46  | 0.02    | 0.04  |
| $H^{\pm}$                                                       | 1011           | 642        | 681   | $R_{\tau\tau}$                                       | 0.46  | 6.7e-6  | 0.03  |
| $\widetilde{\chi_1^0}$                                          | 79             | 76         | 75    | $\frac{\mathrm{BR}(b \to s\gamma)/10^{-4}}{10^{-4}}$ | 3.43  | 3.64    | 3.56  |
| $\widetilde{\chi}_2^0$                                          | -146           | -160       | -155  | $BR(b \to \tau \nu)/10^{-4}$                         | 1.31  | 1.31    | 1.31  |
| $\widetilde{\gamma}_2^0$                                        | 170            | 192        | 224   | $BR(B_s \to \mu^+ \mu^-)/10^{-9}$                    | 3.68  | 3.67    | 3.67  |
| $\widetilde{\gamma}^{0}_{i}$                                    | -237           | 254        | 238   | $\Delta a_{\mu}/10^{-9}$                             | 2.55  | 2.72    | 2.62  |
| $\sim 10^{-10}$                                                 | 334            | 336        | 288   | $\Omega h^2$                                         | 0.112 | 0.00015 | _     |
| $\lambda_5$<br>$\widetilde{z}^{\pm}$                            | 110            | 104        | 107   | $\sigma_p^{SI}/10^{-9} pb$                           | 0.37  | 43.9    | _     |
| $\begin{array}{c} \chi_1 \\ \widetilde{\chi^{\pm}} \end{array}$ | 224            | 104<br>957 | 107   | $\Delta_{FT}$                                        | 578   | 423     | 204   |
| $\chi_{\overline{2}}$                                           | 334            | 257        | 279   | $5 \chi^2$                                           | 19.44 | 17.44   | 17.27 |
| $ $ $\widetilde{g}$                                             | -4086          | 3452       | 2243  | L                                                    | 1     |         |       |

TABLE IV:  $\chi^2_{min}$  benchmark points for three scenarios.  $\chi^2_{min}(I)=19.44$ ,  $\chi^2_{min}(II)=17.44$ ,  $\chi^2_{min}(III)=17.27$ .
| Param. at $M_{CUT}$ (GeV         Points:         I         II         III $M_0$ 1374.34         1515.18         1463.92 $\bar{\nu}_{e/\mu}$ 227.353         123.096         218.092 $M_L$ 1.88583         27.7631         29.7436 $\bar{\nu}_{e/\mu}$ 197.081         19.209         20.021 $M_L$ 1.88583         27.7631         29.7436 $\bar{\nu}_{L}$ 197.081         19.209         20.021 $M_L$ 332.69         184.266         325.658 $\bar{\nu}_L$ 20.387         16.709         26.627 $M_1$ 347.521         274.159         327.307 $\bar{\gamma}_L$ 235.43         16.709         26.627 $M_2$ 241.184         203.472         192.406 $\bar{\gamma}_L$ 235.43         16.709         26.627 $M_2$ 241.184         203.472         192.406 $\bar{\gamma}_L$ 26.631         1.608.51         203.658 $\bar{M}_L$ 16.96.892         e6.1797 $\bar{M}_L$ 837.829         69.178         201.755         217.75 $A_4$ 0.633814         0.631714         0.62988 $\bar{M}_L$ 159.67         15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Points:                                                                         | Ι          | II          | III       |                                                            |          |          |         |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------|------------|-------------|-----------|------------------------------------------------------------|----------|----------|---------|
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Param at Mana: (CoV)                                                            |            |             | 7)        | Points:                                                    | Ι        | II       | III     |
| $ \begin{array}{ c c c c } \hline $\mu_{cr}$ & $197.94$ & $197.94$ & $192.92$ & $20.021$ \\ \hline $\mu_{cr}$ & $197.08$ & $192.09$ & $119.209$ & $20.021$ \\ \hline $\mu_{cr}$ & $332.69$ & $184.266$ & $325.658$ & $$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | M                                                                               | 1 274 24   | 1515.18     | 1462.02   | $\widetilde{ u}_{e/\mu}$                                   | 227.353  | 123.096  | 218.902 |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | <br>                                                                            | 1074.04    | 1010.10     | 1403.92   | $\widetilde{ u}_{	au}$                                     | 197.081  | 119.209  | 200.021 |
| $\begin{array}{ c c c c c c c }\hline M_{F} & 132.03 & 184.200 & 323.038 \\ \hline M_{1} & 347.521 & 274.159 & 327.307 \\\hline M_{2} & 241.184 & 203.472 & 192.406 \\\hline M_{3} & 507.027 & 380.19 & 529.658 \\\hline M_{3} & 507.027 & 380.19 & 529.658 \\\hline M_{4} & -2219.16 & -2178.56 & -2458.82 \\\hline M_{4} & -261.51 & -696.892 & -861.797 \\\hline M_{4} & -626.151 & -696.892 & -861.797 \\\hline M_{4} & -626.151 & -696.892 & -861.797 \\\hline M_{4} & -0.0182404 & -0.00906699 & -0.027 \\\hline M_{4} & 0.038044 & 0.631714 & 0.62998 \\\hline M_{4} & 0.033611 & 0.14492 & 0.0676808 \\\hline tan_{\beta} & 2.04129 & 1.93553 & 1.88946 \\\hline M_{4}ff & 213.478 & 199.934 & 222.791 \\\hline M_{4}ff & 213.478 & 199.934 & 222.791 \\\hline M_{1}g^{0} & 527.913 & 474.168 & 528.363 \\\hline M_{1}g^{0} & 125.248 & 126.997 & 126.681 \\\hline M_{2}fg & 125.248 & 126.997 & 126.681 \\\hline M_{2}g^{0} & 125.248 & 126.997 & 126.681 \\\hline M_{2}g^{0} & 125.248 & 126.997 & 126.681 \\\hline M_{4}g^{0} & 527.913 & 474.168 & 528.363 \\\hline M_{4} & 117.208 & 148.303 & 87.6805 \\\hline M_{4} & 117.208 & 148.303 & 87.6805 \\\hline M_{4} & 117.208 & 148.303 & 87.6805 \\\hline M_{4} & 519.396 & 464.861 & 520.578 \\\hline M_{1} & 117.208 & 143.933 & 143.091 \\\hline M_{2} & 532.546 & 476.502 & 533.429 \\\hline M_{1} & 519.396 & 464.861 & 520.578 \\\hline M_{1} & 117.208 & 148.303 & 87.6805 \\\hline M_{2} & 0.976746 & 0.850748 & 0.91 \\\hline M_{2} & 51.336 & -6.5309 & -0.91 \\\hline M_{2} & 52.51.83 & -235.379 & -260.193 \\\hline M_{2} & 251.983 & -235.379 & -260.193 \\\hline M_{2} & 221.923 & 27.964 & 285.1 \\\hline M_{2} & 224.203 & 27.964 & 285.1 \\\hline M_{2} & 224.203 & 27.964 & 285.1 \\\hline M_{2} & 224.203 & 27.964 & 285.1 \\\hline M_{2} & 224.528 & 264.126 & 275.393 \\\hline M_{2} & 224.528 & 264.126 & 275.393 \\\hline M_{2} & 224.528 & 206.123 & 204.7 \\\hline M_{2} & 224.528 & 206.123 & 204.7 \\\hline M_{2} & 224.528 & 206.126 & 275.393 \\\hline M_{2} & -236.558 & -2$ |                                                                                 | 222.60     | 194.966     | 29.7450   | $\widetilde{e}_R/\widetilde{\mu}_R$                        | 210.387  | 127.992  | 161.709 |
| $ \begin{array}{ c c c c c c } \hline $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $ $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                 | 247 591    | 274 150     | 323.038   | $\widetilde{e}_L/\widetilde{\mu}_L$                        | 235.435  | 136.779  | 226.627 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                 | 347.321    | 274.159     | 327.307   | $\widetilde{	au}_1$                                        | 98.252   | 103.165  | 70.3972 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $M_2$                                                                           | 241.184    | 203.472     | 192.406   | $\widetilde{	au_2}$                                        | 226.631  | 147.028  | 220.787 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $M_3$                                                                           | 507.027    | 380.19      | 529.658   | $\widetilde{t_1}$                                          | 578.747  | 516.556  | 527.772 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $A_0$                                                                           | -2219.16   | -2178.56    | -2458.82  | $\widetilde{t_2}$                                          | 888.68   | 748.272  | 883.928 |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $A_E$                                                                           | -8974.16   | -2434.99    | -7497.61  | $\widetilde{b}_1$                                          | 837.829  | 680.188  | 840.973 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $A_{\lambda}$                                                                   | -626.151   | -696.892    | -861.797  | $\widetilde{h}_2$                                          | 1999 49  | 2071.85  | 2117 56 |
| Param. at $M_{SUSY}$ : $1000000000000000000000000000000000000$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | $A_{\kappa}$                                                                    | -0.0182404 | -0.00906699 | -0.027    | $\widetilde{u}_{R}/\widetilde{c}_{R}$                      | 2023.55  | 2087.01  | 2147.75 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Param. at $M_{SUSY}$ :                                                          |            |             |           | $\widetilde{u}_{II}/\widetilde{c}_{II}$                    | 1595 7   | 1559 77  | 1682.16 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\lambda$                                                                       | 0.630814   | 0.631714    | 0.62998   | $d_{L}/\tilde{c}_{L}$                                      | 2022 /   | 2087.34  | 21/3 /2 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | κ                                                                               | 0.0734611  | 0.14492     | 0.0676808 | $\widetilde{d_{K}}/\widetilde{s_{K}}$                      | 1506.86  | 1560.02  | 1683 18 |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\tan\beta$                                                                     | 2.04129    | 1.93553     | 1.88946   |                                                            | 1090.00  | 1500.92  | 1005.10 |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\mu_{eff}$                                                                     | 213.478    | 199.934     | 222.791   | D                                                          | 1 94077  | 1 20000  | 1.97    |
| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Spectrum:(GeV)                                                                  |            |             |           | $R_{\gamma\gamma}$                                         | 1.24077  | 1.20900  | 1.97    |
| $ \begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | $H_{1}^{0}$                                                                     | 83.3888    | 96.8521     | 96.8172   | $R_{\gamma\gamma}$                                         | 1.24301  | 1.304    | 1.38    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $H_2^0$                                                                         | 125.248    | 126.997     | 126.681   | $R_{\gamma\gamma}^{*D1}$                                   | 1.22564  | 1.20442  | 1.33    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $H_{3}^{0}$                                                                     | 527.913    | 474.168     | 528.363   |                                                            | 1.02234  | 1.0456   | 1.0     |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $A_1$                                                                           | 117.208    | 148.303     | 87.6805   | R <sub>Vbb</sub>                                           | 0.965538 | 0.797919 | 0.88    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $A_2$                                                                           | 532.546    | 476.502     | 533.429   | $R_{bb}$                                                   | 0.97746  | 0.854005 | 0.91    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $H^{\pm}$                                                                       | 519.396    | 464.861     | 520.578   | $R_{	au	au}$                                               | 0.976746 | 0.850748 | 0.91    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\widetilde{\chi}_1^0$                                                          | 65.4309    | 70.9172     | 62.9633   | $\frac{\mathrm{BR}(b \to s\gamma)/10^{-4}}{}$              | 3.54     | 3.56     | 3.53    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\widetilde{\chi}^0_2$                                                          | 124.263    | 122.642     | 112.29    | $\text{BR}(b \to \tau \nu)/10^{-4}$                        | 1.32     | 1.32     | 1.32    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\widetilde{\chi}^0_3$                                                          | 163.166    | 143.935     | 143.091   | $\frac{\mathrm{BR}(B_s \to \mu^+ \mu^-)/10^{-9}}{10^{-9}}$ | 3.67     | 3.67     | 3.67    |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\widetilde{\chi}^0_4$                                                          | -251.983   | -235.379    | -260.193  | $\Delta a_{\mu}/10^{-9}$                                   | 1.9      | 2.7      | 2.3     |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\widetilde{\gamma}^0_{r}$                                                      | 292.303    | 272.964     | 285.1     | $\Omega h^2$                                               | 0.114927 | 0.0006   | _       |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\widetilde{\gamma}_{1}^{\pm}$                                                  | 131 302    | 107 801     | 108 825   | $\sigma_p^{SI}/10^{-9} pb$                                 | 1.48     | 4.9      |         |
| $\begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | $\widetilde{\gamma}^{\pm}$                                                      | 284 302    | 264 126     | 275 303   | $\Delta_{FT}$                                              | 77       | 89       | 79      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\begin{array}{c c} \lambda_2 \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ & \\ $ | 1936 58    | 066 878     | 1901.07   | $6 \chi^2$                                                 | 22       | 20       | 20      |

TABLE V: Points with appropriate fine-tuning.