D Meson Results at BESIII

管颖慧(UCAS) For BESIII Collaboration 2012.10.25

第10届全国重味物理和CP破坏研讨会

Outline

- Charm meson production at BESIII
- Leptonic decay $D^+ \rightarrow \mu^+ \nu_{\mu}$
 - Decays constant f_{D+}
 - CKM matrix element $|V_{cd}|$
- Semileptonic $D^0 \rightarrow K/\pi ev_e$
 - Form factor $f_{+}^{K}(0)$, $f_{+}^{\pi}(0)$
 - CKM matrix elements $|V_{cs(d)}|$
- Rare decay $D^0 \rightarrow \gamma \gamma$ - FCNC
- Summary

Charm Meson Productions at Threshold

• At BESIII

- World's largest $\psi(3770)$ sample $e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D^0}$
- D^0D^0bar/D^+D^- are produced near threshold in pair.
- Advantage: clean environment; kinematic constrains; quantum correlations
- Dtag technique
 - Fully reconstruct one D first, search for concerned final state at the recoiling side
 - Two variables: ΔE , beam-constrained mass $M_{\rm BC}$

$$\Delta E = E_D - E_{\text{Beam}}$$
$$M_{\text{BC}} = \sqrt{E_{\text{Beam}}^2 - p_D^2}$$

Leptonic Decay $D^+ \rightarrow \mu^+ \nu_{\mu}$

 \mathbf{D}^+

Decay rate

$$\Gamma_{\rm SM}(D_{(s)}^+ \to l^+ \nu) = \frac{G_F^2}{8\pi} m_l^2 m_{D_{(s)}} \left(1 - \frac{m_l^2}{m_{D_{(s)}}^2} \right)^2 |V_{cd(s)}|^2 f_{D_{(s)}^+}$$

- Extract decay constant f_{D+}
- Test LQCD calculations
- Over-constrain CKM matrix
- Sensitive to New Physics
- At BESIII:

$$B(D^+ \to \mu^+ \nu) = \frac{N_{D^+ \to \mu^+ \nu}}{N_{D_{\text{tag}}^-} \mathcal{E}_{D^+ \to \mu^+ \nu}}$$

w⁺ ●vvvvve

$D^+ \rightarrow \mu^+ \nu_{\mu}$ Tagging Side

Nine *D* tag modes:

BESIII Preliminary

2012/10/25

$D^+ \rightarrow \mu^+ \nu_{\mu}$ Signal Side

- At recoiling side:
 - Only one charged track
 - Identified as muon
 - No isolated photon

• Select on consistency with leptonic decay:

$D^+ \rightarrow \mu^+ \nu_{\mu}$ Backgrounds

Event type	Number
$N(D^+ \to \mu^+ \nu_\mu)^{\text{candidate}}$	425
$N_{ m b}$	$47.7 \pm 2.3 \pm 1.3$
$N(D^+ o \mu^+ u_\mu)$	$377.3 \pm 20.6 \pm 2.6$

 The number of backgrounds is also estimated with data.

$$N_b^{\rm tot} = 48.9 \pm 4.8$$

 Consistent within error with N_b estimated from MC

$D^+ \rightarrow \mu^+ \nu_{\mu}$ Results

Branching Fraction

 $B(D^+ \rightarrow \mu^+ \upsilon_{\mu}) = (3.74 \pm 0.21 \pm 0.06) \times 10^{-4}$

Decay constant

 $f_{p^+} = (203.91 \pm 5.72 \pm 1.97) \text{ MeV}$

(Input $\tau_{\text{D+}},\,m_{\text{D+}},\,m_{\mu\text{+}}$ of PDG10 and V_{cd} of CKM-Fitter)

$D^+ \rightarrow \mu^+ \nu_\mu$ Results

 $\implies B_{sig} = \frac{N_{sig}^{oos} \epsilon_{tag}}{N_{tag}^{obs} \epsilon_{tag,sig}}$

- CKM-unitarity $\implies |V_{cd(s)}|$, extract FF, test LQCD
- Input LQCD FF to over-constrain CKM
- At BESIII:

2012/10/25

Dtag

$D^0 \rightarrow K/\pi e v_e$ Tagging Side

 $N_{D}^{\text{tag}} = (0.774 \pm 0.001) \times 10^{6} \text{ in } 0.92 \text{ fb}^{-1}$

$D^0 \rightarrow K/\pi e v_e$ Signal Side

- Selection:
 - Two oppositely-charged good tracks
 - $K(\pi)$ and e are identified, right charged e
 - Veto extra EMC shower which is larger than 250MeV(suppress backgrounds with π^0)
- Missing neutrino: $U = E_{\text{miss}} c \left| \vec{P}_{\text{miss}} \right| \approx 0$

12

$D^0 \rightarrow K/\pi e v_e \Gamma(q^2)$

- Fit *U* distribution in each q^2 bin
- Compare results from each tag mode

$D^0 \rightarrow K/\pi ev_e$ Extract $f(q^2)$

- Points are data with statistical errors only
- Curves are Fermilab-MILC (arXiv:1111.5417) with $\pm 1\sigma$ (statistical) bands
- Other theoretical work: HPQCD, arXiv:1111.0225
- Comparing shape only here(f₊(0) not known)

Form Factor Parameterization

Simple Pole Model

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{m_{H^{*}}^{2}}\right)}$$

Modified Pole Model

Becirevic and Kaidalov PLB 478, 417 ('00)

$$f_{+}(q^{2}) = \frac{f_{+}(0)}{\left(1 - \frac{q^{2}}{m_{H^{*}}^{2}}\right)\left(1 - \alpha \frac{q^{2}}{m_{H^{*}}^{2}}\right)}$$

Series Expansion

Becher and Hill PLB 633, 61 ('06)

$$f_{+}(q^{2}) = \frac{1}{P(q^{2})\phi(q^{2},t_{0})} \sum_{k=0}^{\infty} a_{k}(t_{0}) \left[z(q^{2},t_{0}) \right]^{k}$$

$$z(q^{2},t_{0}) = \frac{\sqrt{t_{+} - q^{2}} - \sqrt{t_{+} - t_{0}}}{\sqrt{t_{+} - q^{2}} + \sqrt{t_{+} - t_{0}}} \qquad t_{\pm} = (m_{D} \pm m_{X})^{2}$$

Form Factor *f*(q²) Fits

Form Factor Results

BESIII Preliminary

Simple Pole	$f_+(0) V_{cd(s)} $	m_{pole}	
$D^0 \to K e \nu$	$0.729 {\pm} 0.005 {\pm} 0.005$	$1.943 {\pm} 0.025 {\pm} 0.003$	
$D^0 \to \pi e \nu$	$0.142 {\pm} 0.003 {\pm} 0.001$	$1.876 {\pm} 0.023 {\pm} 0.003$	
Modified Pole	$f_+(0) V_{cd(s)} $	α	
$D^0 \to K e \nu$	$0.725 {\pm} 0.006 {\pm} 0.005$	$0.265 {\pm} 0.045 {\pm} 0.006$	
$D^0 \to \pi e \nu$	$0.140 {\pm} 0.003 {\pm} 0.001$	$0.315 {\pm} 0.071 {\pm} 0.011$	
2 par. series	$f_+(0) V_{cd(s)} $	r_1	
$D^0 \to K e \nu$	$0.728 {\pm} 0.006 {\pm} 0.005$	$-1.235 \pm 0.201 \pm 0.025$	
$D^0 \to \pi e \nu$	$0.140 {\pm} 0.004 {\pm} 0.001$	$-2.117 {\pm} 0.163 {\pm} 0.023$	
3 par. series	$f_+(0) V_{cd(s)} $	r_1	r_2
$D^0 \to K e \nu$	$0.729 {\pm} 0.008 {\pm} 0.005$	$-1.251 \pm 0.349 \pm 0.053$	$0.527 {\pm} 7.984 {\pm} 0.895$
$D^0 \to \pi e \nu$	$0.144 {\pm} 0.005 {\pm} 0.001$	$-2.728 \pm 0.482 \pm 0.031$	$4.194 \pm 3.122 \pm 0.237$

• Reasonable consistency with CLEO-c, comparable precision with 2/3 of data still to analyze

Rare Decay $D^0 \rightarrow \gamma \gamma$

- *D*⁰ → γγ
 - Flavor Changing Neutral Current(FCNC) ($c \rightarrow u + \gamma$) is forbidden at tree level.
 - − $D^0 \rightarrow \gamma \gamma$ is dominated by long-distance effect.
- Within SM:
 - Short distance: $B(D^0 \rightarrow \gamma \gamma) \sim 10^{-11}$
 - Long distance: $B(D^0 \rightarrow \gamma \gamma) \sim 10^{-8}$ (PRD 64,074008)
- Minimal super-symmetric standard model says the rate would be enhanced by a factor of 100 by exchanging gluino (PLB 500,304) or $B(D^0 \rightarrow \gamma \gamma) \sim 10^{-6}$
- CLEO-2 searched with 13.8fb⁻¹ around Υ(4S)
 - − $B(D^0 \rightarrow \gamma \gamma) < 2.9 \times 10^{-5}@90\%$ C.L. (PRL90,01801)
- CLEO-c searched based on 818 pb⁻¹ @ ψ (3770)
 - − $B(D^0 \rightarrow \gamma \gamma) < 8.63 \times 10^{-6} @90\%$ C.L. (Charm 2010)
- **BaBar** has a result with $470.5 \text{ fb}^{-1}@\Upsilon(4S)$
 - − $B(D^0 \rightarrow \gamma \gamma) < 2.2 \times 10^{-6} @90\%$ C.L.(arXiv:1110.6480)

 $D^{\cup} \rightarrow \gamma \gamma$ at BESIII

- As the main background components, we also study events from $D^0 \rightarrow \pi^0 \pi^0$, and present preliminary results as:
 - $B(D^0 \rightarrow \gamma \gamma)/B(D^0 \rightarrow \pi^0 \pi^0)$
- Analysis method
 - Reconstruct one *D* with two γ s or π^0 s, where $\pi^0 \rightarrow \gamma \gamma$
 - Conservation of energy and momentum is required:

 $\Delta E \sim 0, \ M_{\rm BC} \ \sim M_{\rm D0}$

• Details selection criteria are tuned based on MC

 $D^{\cup} \rightarrow \gamma \gamma$

$B(D^{0} \rightarrow \gamma \gamma) / B(D^{0} \rightarrow \pi^{0} \pi^{0}) < 5.8 \times 10^{-3}$ @ 90% C.L.

Experiments	BESIII	BABAR	CLEOc	PDG11
B ^{up} (D ⁰ →γγ) [×10 ⁻⁶]	<4.6	<2.2	<8.63	<27

Another double-tag technique is ongoing, which can reject most of backgrounds and reduce systematic errors

Summary

- BESIII has been successfully operated
- Some results on flavor physics have been obtained
 - Leptonic decay:
 - $B(D^+ \rightarrow \mu^+ \nu_{\mu}) = (3.74 \pm 0.21 \pm 0.06) \times 10^{-4}$
 - f_{D+} = (203.91±5.72±1.97) MeV
 - $|V_{cd}| = 0.222 \pm 0.006 \pm 0.005$
 - Semileptonic decay (0.92fb⁻¹, will improve use full dataset)

Mode	measured branching fraction (%)	PDG	CLEOc
$\bar{D^0} \to K^+ e^- \bar{\nu}$	$3.542 \pm 0.030 \pm 0.067$	3.55 ± 0.04	$3.50 \pm 0.03 \pm 0.04$
$\bar{D^0} \to \pi^+ e^- \bar{\nu}$	$0.288 \pm 0.008 \pm 0.005$	0.289 ± 0.008	$0.288 \pm 0.008 \pm 0.003$

- Rare decay: $B(D^0 \rightarrow \gamma \gamma)/B(D^0 \rightarrow \pi^0 \pi^0) < 5.8 \times 10^{-3} @90\%$ C.L.
- Many other topics: D^0 - D^0 bar mixing, CPV, rare decay, Cabibbo suppress decay, other semileptonic decays are ongoing. Thank you!

BACK UP

BESIII data

• World's largest $\psi(3770)$ sample

Advantage of open charm at threshold

e⁺e⁻ Colliders@threshold:

 $e^+e^- \rightarrow \psi(3770) \rightarrow D^0\overline{D^0} \ [C = -1] \quad \text{OR} \quad e^+e^- \rightarrow \gamma^* \rightarrow D^0\overline{D^0}\gamma \ [C = +1]$

Good for charm flavor physics:

- Threshold production: clean
- Known initial energy and quantum numbers
- Both D and Dbar fully reconstructed (double tag)
- Absolute measurements

Charm's Role in the Big Picture

Flavor Physics:

* Over-constrain CKM matrix

* Search for New Physics

Difficulties:

- * Mixing is not theoretically clean
- * V_{ub} is not theoretically clean

Latest result:

 $V_{ub} \times 10^3 = 3.92 + -0.09(exp) + -0.45(theory)$

- * Needs inputs from Lattice QCD
- * Charm physics provides perfect calibration

$D^+ \rightarrow \mu^+ \nu_{\mu}$ Backgrounds-data

- The number of backgrounds is also estimated with data.
- Examining number of events with only one charged track in recoiling side.

 Consistent within error with N_b estimated from MC

$D^+ \rightarrow \mu^+ \nu_\mu$ Results

 Branching fraction: B(D⁺→μ⁺ν_µ) = (3.74±0.21±0.06)·10⁻⁴

$$\Gamma_{\rm SM}(D_{(s)}^+ \to l^+ \nu) = \frac{G_F^2}{8\pi} m_l^2 m_{D_{(s)}} \left(1 - \frac{m_l^2}{m_{D_{(s)}}^2} \right)^2 |V_{cd(s)}|^2 f_{D_{(s)}^+}$$

Decay constant:
 f_{D+} = (203.91±5.72±1.97) MeV

 $\tau_{D+} = (1040 \pm 7) \text{ fs},$ $M_{D+} = (1896.60 \pm 0.16) \text{ MeV}$ $M_{\mu+} = (105.658 \pm 0.000) \text{ MeV}$ $V_{cd} = 0.2252 \pm 0.0007 (CKM-Fitter)$

- Form factor: |V_{cd}| = 0.222±0.006±0.005

Cited: CKM-Fitter: PDG 2010 LQCD: Phys. Rev. Lett. 100, 062002 (2008) 2012/10/25

$$\begin{array}{l} \overleftarrow{} \\ \tau_{D^{+}} = (1040 \pm 7) \text{ fs,} \\ M_{D^{+}} = (1896.60 \pm 0.16) \text{ MeV} \\ M_{\mu^{+}} = (105.658 \pm 0.000) \text{ MeV} \\ f_{D^{+}} = 207 \pm 4 \text{ MeV} \text{ (from LQCD)} \end{array}$$

$D^0 \rightarrow K/\pi e v_e FF$

Comparison (3 par. Model)

- Numbers are from HFAG 2012 report(arXiv:1207.1158)
- Error bar of BESIII prel. shrink with full data