

Recent progress of XYZ particles

Z.Q.Liu (刘智青) IHEP, Beijing

On behalf of Belle Collaboration zqliu@ihep.ac.cn

The 10th HFCPV Chinese meeting, 25th. Oct. 2012, Qingdao

Outline

- 1. The 1^{-} Y family produced via ISR.
- Y(4008), Y(4260), Y(4360), Y(4660), ψ (4040), ψ (4160)...
- 2. New resonances in $\gamma\gamma$ reaction.
- $\chi_{c2}(2P), \gamma\gamma \rightarrow \omega\omega, \omega\phi, \phi\phi, \omega J/\psi$
- 3. Bottomnium.
- $Z_b, Z_c, h_b(1P,2P), \eta_b(1S,2S), h_c(1P)$
- 4. Summary.

Lots of new particles discovery, which can not be assigned to potential mode naturally. New hadron models:

molecule

1⁻⁻⁻ Charmonium-like states via ISR

Y(4260)

Parameters	Solution I	Solution II	
<i>M</i> (<i>R</i> 1)	$4008 \pm 40^{+114}_{-28}$		
$\Gamma_{\rm tot}(R1)$	$226 \pm 44 \pm 87$		
$\mathcal{B}\Gamma_{e^+e^-}(R1)$	$5.0 \pm 1.4^{+6.1}_{-0.9}$	$12.4 \pm 2.4^{+14.8}_{-1.1}$	
M(R2)	$4247 \pm 12^{+17}_{-32}$		
$\Gamma_{\rm tot}(R2)$	$108 \pm 19 \pm 10$		
$\mathcal{B}\Gamma_{e^+e^-}(R2)$	$6.0 \pm 1.2^{+4.7}_{-0.5}$	$20.6 \pm 2.3^{+9.1}_{-1.7}$	
ϕ	$12\pm29^{+7}_{-98}$	$-111\pm7^{+28}_{-31}$	

PRL99,182004(2007)

5.5

Y(4260)

Y(4260)

Y(4360) and Y(4660)

Y(4360) and Y(4660)

ψ(4040) & ψ(4160))ηJ/ψ

Belle, FPCP2012 ψ (4040) & ψ (4160) signal

BESIII 478pb⁻¹@ 4.009GeV $\sigma(\eta J/\psi)$ =(32.1 ± 2.8 ± 1.3) pb $\sigma(\pi^0 J/\psi)$ <1.6 pb

ψ(4040) & ψ(4160))η J/ψ

 $\pi^+\pi^-J/\psi$ vs. $\eta J/\psi$

- 1. Y(4008)? & Y(4260) observed in $\pi^+\pi^- J/\psi$.
- 2. $\psi(4040) \& \psi(4160)$ observed in $\eta J/\psi$.
- 3. Huge difference in exclusive hadron channels?

$B \rightarrow K(\gamma \chi_{c1})$

Charmonium-like states in $\gamma\gamma$ production

Where is $\chi_{cJ}(2P)$ triplet?

Where is $\chi_{cJ}(2P)$ triplet?

Still need experimental effort to identify the $\chi_{cJ}(2P)$ triplet. BESIII also provide opportunity in $\psi(4040)$ E1 transition.

Z. Q. Liu, C. P. Shen, C. Z. Yuan et al.

PRL108,232001(2012)

- $\gamma\gamma \rightarrow VV$ cross section measurement from thershold to 4GeV
- . Resonant structures have been observed. Spin-2 components are significant.
 - W⁻ⁿ power law fit high energy region: n~8, agree with pQCD calculation.
 - V. L. Chernyak arXiv:0912.0623 19

PRL108,232001(2012)
What's nature of enhancement?
Threshold effect can not explain simply.
4-qurak states? "golden mode", but not compatible with current models
(q²q² tetra-quark, t-channel factorization, one-pion exchange).
Molecule? "QCD sum-rule" J. R. Zhang et al . arXiv:1203.0700

- 1. Charmonium results at high energy region.
- 2. First observation of $\eta_c \rightarrow \omega \omega$

Z. Q. Liu, C. P. Shen, C. Z .Yuan et al.

PRL108,232001(2012)

Mode	$\omega\phi$	$\phi \phi$	ωω
η_c	< 0.49 [< 7.9]	$7.75 \pm 0.66 \pm 0.62$ [386 ± 31]	8.67 ± 2.86 ± 0.96 [85 ± 29]
Xo	< 0.34 [< 4.3]	$1.72 \pm 0.33 \pm 0.14$ [56 ± 11]	<3.9 [< 35]
Xa	< 0.04 [< 2.4]	$0.62 \pm 0.07 \pm 0.05$ [89 ± 11]	<0.64 [<28]

Bottomonium-like Spectroscopy

$h_b(1P)$ and $h_b(2P)$

$\eta_b(1S)$ and $\eta_b(2S)$

η_b (1S) and η_b (2S)

 $\Upsilon(1S,2S) \rightarrow n(p, \pi, K...)$ arXiv:1205.6351, accepted for PRL publication 26 light hadron modes in total $h_{
m b}({
m 2P})$ yield, 10 3 / 10 MeV/c² 30 (c) **CLEO data, but not from CLEO collaboration** h_b(2P) \rightarrow γη_b(2S) Y(2S) MeV 20 Хb1 events / 2.5 χ_{b2} $\eta_{b}(2S)$ 10 χро 97 9.8 9.9 10 10 1 50 100 200 250 150 300 $M_{miss}^{(n)}(\pi^{\dagger}\pi^{\gamma}\gamma), \text{ GeV/c}^2$ ∆ M (MeV) S. Dobbs, Z. Metreveli, A. Tomaradze, T. Xiao and K. Seth $M(\eta_{b}(1S))=(9402.4\pm1.5\pm1.8)MeV$ Y(1S) PRL109,082001(2012) $\Gamma(\eta_{\rm b}(1S))=(10.8^{+4.0}_{-3.7})$ MeV **Belle** Events/2.5 MeV Belle $M(\eta_{b}(2S))=(9999.0\pm3.5^{+2.8})$ MeV agree $\eta_{b}(1S)$ $\Delta M_{hf}(\eta_{h}(2S)) = (24.3^{+4.0}) MeV$ 0.3 0.4 0.5 2 $\Delta M_{HF}(2S) / \Delta M_{HF}(1S)$ $M(\eta_{\rm b}(1S))=(9393.2\pm3.4\pm2.3)$ MeV **CLEO** $M(\eta_{b}(2S))=(9974.6\pm2.3\pm2.1)MeV$ disagree $\Delta M_{hf}(\eta_{b}(2S))=(48.7\pm2.3\pm2.1)MeV$ 100 150 200 250 50 300∆ M (MeV)

$Z_{b}(10610) \& Z_{b}(10650) \rightarrow B^{(*)}B^{*}\pi^{+/-}$

Near BB* and B*B* threshold

- 1. BB* & B*B* bound states? $Z_b^{M(B^{(*)})+M(B^*)}$
- Unbound threshold resonance? Z_b(10610)-[M(B)+M(B*)] ~(3.6±1.8) MeV / Zb(10650)-[M(B*)+M(B*)] ~(3.1±1.8) MeV
- 3. Multi-quark states?

$Z_{b}(10610) \& Z_{b}(10650) \rightarrow B^{(*)}B^{*}\pi^{+/-}$

Summary

- 1. Conventional charmonium & bottomonium is more and more mature.
- 2. More and more new states have been discovered.
- 3. Hadron spectroscopy still need more effort both in experiment and theory.

Thanks!