Production of triply heavy baryons and six free heavy quarks at LHC

Su-Zhi Wu

October 25, 2012

Su-Zhi Wu Production of triply heavy baryons and six free heavy quarks at

OUTLINE

- . Triply heavy baryons production
 - .Overview of the triply heavy baryons.
 - .The production of the triply heavy baryons.

. Six free heavy quarks production

・ 同 ト ・ ヨ ト ・ ヨ ト

1.1 Overview of the triply heavy baryons

.The color configuration: $\frac{1}{\sqrt{6}}\varepsilon^{ijk}Q_{1i}Q_{2j}Q_{3k}$.Three energy scales: $m >> |mv| >> mv^2$.Size: 1/|mv|

.Spin structure: Ω_{ccc} : $\frac{3}{2}$, Ω_{ccb}^* : $\frac{3}{2}$, Ω_{ccb} : $\frac{1}{2}$.The nonrelativistic triply heavy baryon in the ground state is:

$$\begin{split} |\Omega_{Q_1Q_2Q_3}, S, S_Z, \vec{P} = 0 \rangle &= \int \frac{d^3 \vec{V}_1}{(2\pi)^3} \frac{d^3 \vec{V}_2}{(2\pi)^3} \sum_{\xi_i, \eta_i} \frac{\varepsilon^{\xi_1 \xi_2 \xi_3}}{\sqrt{6}} \langle S, S_Z | \eta_1, \eta_2, \eta_3 \rangle \\ &\frac{\sqrt{2M}}{\sqrt{2E_1 2E_2 2E_3}} \frac{1}{\sqrt{d!}} \psi(\vec{V}_1, \vec{V}_2) \times |Q_1, \xi_1, \eta_1, \vec{p_1} = \vec{V}_1 \rangle \\ &\times |Q_2, \xi_2, \eta_2, \vec{p_2} = \vec{V}_2 \rangle \times |Q_3, \xi_3, \eta_3, \vec{p_3} = -\vec{V}_1 - \vec{V}_2 \rangle \,. \end{split}$$

(本間) (本語) (本語) (語)

1.2 The process of $pp \to \Omega_{Q_1Q_2Q_3}\bar{Q}_1\bar{Q}_2\bar{Q}_3 + X$

The production mechanism:

```
g-g fusion,
q\bar{q} annihilation (u, d, s).
```


- . Energy scales: m >> mv
 - . the short-distance coefficient
 - . the long-distance matrix element

.For g-g fusion process:

All diagrams shrink to seven basic diagrams:

Figure: The seven inequivalent topological constructions of three heavy quark pairs assuming three heavy quarks with different heavy flavors.

.Feynman diagram generation

Feynman diagrams containing a quartic-gluon vertex:

2×6+22=34

Feynman diagrams without quartic-gluon vertex:

 $(6+3) \times 11 \times 7 = 693$

The number of the Feynman diagrams:

34+693=727 Distinct amplitudes:

727+2×34=795

・ 同 ト ・ ヨ ト ・ ヨ ト

. For process $gg \to ccb\bar{c}\bar{c}\bar{b}$.

two permutations: $(c_1\bar{c}_1c_2\bar{c}_2b\bar{b}),$ $(c_1\bar{c}_2c_2\bar{c}_1b\bar{b}),$ Feynman diagrams: $727\times2!=1454$ Distinct amplitudes: $795\times2!=1590$

. For process
$$gg \to ccc\bar{c}\bar{c}\bar{c}$$
:

.six permutations:

$$\begin{array}{ll} (c_1 \bar{c}_1 c_2 \bar{c}_2 c_3 \bar{c}_3), & (c_1 \bar{c}_1 c_2 \bar{c}_3 c_3 \bar{c}_2), \\ (c_1 \bar{c}_2 c_2 \bar{c}_3 c_3 \bar{c}_1), & (c_1 \bar{c}_2 c_2 \bar{c}_1 c_3 \bar{c}_3), \\ (c_1 \bar{c}_3 c_2 \bar{c}_1 c_3 \bar{c}_2), & (c_1 \bar{c}_3 c_2 \bar{c}_2 c_3 \bar{c}_1). \\ \text{Feynman diagrams:} & 727 \times 3! = 4362 \\ \text{Distinct amplitudes:} & 795 \times 3! = 4770 \end{array}$$

.Simplification

Color factor antisymmetry.

Spin wave function symmetry.

Non-relativistic approximation.

個 と く ヨ と く ヨ と

. Generating basic Feynman diagrams automatically three integers:

i denoting the position of the first gluon

- \boldsymbol{j} denoting the position of the second gluon
- \boldsymbol{k} denoting the topological construction of three heavy quark pairs

.Amplitudes of the Feynman diagrams:

gauge invariance: ward identity (12 independent color factors)

Twelve independent color factors.

$$C_{1} = \frac{\varepsilon^{\xi_{1}\xi_{2}\xi_{3}}}{\sqrt{6}} (\lambda^{a}\lambda^{b})_{\xi_{1}\chi_{2}} \delta_{\xi_{2}\chi_{1}} \delta_{\xi_{3}\chi_{3}} , C_{2} = \frac{\varepsilon^{\xi_{1}\xi_{2}\xi_{3}}}{\sqrt{6}} (\lambda^{b}\lambda^{a})_{\xi_{1}\chi_{2}} \delta_{\xi_{2}\chi_{1}} \delta_{\xi_{3}\chi_{3}} , C_{3} = \frac{\varepsilon^{\xi_{1}\xi_{2}\xi_{3}}}{\sqrt{6}} (\lambda^{a}\lambda^{b})_{\xi_{1}\chi_{1}} \delta_{\xi_{2}\chi_{2}} \delta_{\xi_{3}\chi_{3}} , C_{4} = \frac{\varepsilon^{\xi_{1}\xi_{2}\xi_{3}}}{\sqrt{6}} (\lambda^{b}\lambda^{a})_{\xi_{1}\chi_{1}} \delta_{\xi_{2}\chi_{2}} \delta_{\xi_{3}\chi_{3}} , C_{5} = \frac{\varepsilon^{\xi_{1}\xi_{2}\xi_{3}}}{\sqrt{6}} (\lambda^{a}\lambda^{b})_{\xi_{1}\chi_{3}} \delta_{\xi_{2}\chi_{1}} \delta_{\xi_{3}\chi_{2}} , C_{6} = \frac{\varepsilon^{\xi_{1}\xi_{2}\xi_{3}}}{\sqrt{6}} (\lambda^{b}\lambda^{a})_{\xi_{1}\chi_{3}} \delta_{\xi_{2}\chi_{1}} \delta_{\xi_{3}\chi_{2}} , C_{7} = \frac{\varepsilon^{\xi_{1}\xi_{2}\xi_{3}}}{\sqrt{6}} (\lambda^{a})_{\xi_{1}\chi_{1}} (\lambda^{b})_{\xi_{2}\chi_{2}} \delta_{\xi_{3}\chi_{3}} , C_{8} = \frac{\varepsilon^{\xi_{1}\xi_{2}\xi_{3}}}{\sqrt{6}} (\lambda^{a})_{\xi_{1}\chi_{2}} (\lambda^{b})_{\xi_{2}\chi_{1}} \delta_{\xi_{3}\chi_{3}} , C_{8} = \frac{\varepsilon^{\xi_{1}\xi_{2}\xi_{3}}}{\sqrt{6}} (\lambda^{a})_{\xi_{1}\chi_{2}} (\lambda^{b})_{\xi_{2}\chi_{2}} \delta_{\xi_{3}\chi_{1}} , C_{10} = \frac{\varepsilon^{\xi_{1}\xi_{2}\xi_{3}}}{\sqrt{6}} (\lambda^{a})_{\xi_{1}\chi_{3}} (\lambda^{b})_{\xi_{2}\chi_{2}} \delta_{\xi_{3}\chi_{1}} , C_{10} = \frac{\varepsilon^{\xi_{1}\xi_{2}\xi_{3}}}{\sqrt{6}} (\lambda^{a})_{\xi_{1}\chi_{3}} (\lambda^{b})_{\xi_{2}\chi_{3}} \delta_{\xi_{3}\chi_{2}} , C_{12} = \frac{\varepsilon^{\xi_{1}\xi_{2}\xi_{3}}}{\sqrt{6}} (\lambda^{a})_{\xi_{1}\chi_{1}} (\lambda^{b})_{\xi_{2}\chi_{3}} \delta_{\xi_{3}\chi_{2}} .$$

イロン イヨン イヨン イヨン

æ

. In leading order (expansion in \boldsymbol{v}), the differential cross section of g-g fusion is:

$$d\hat{\sigma} = \sum_{S_Z} \frac{(2\pi)^4}{2\hat{s}} \delta^4(k_1 + k_2 - P - q_1 - q_2 - q_3)$$

$$\times \frac{d^3P}{(2\pi)^3 2E} \frac{d^3q_1}{(2\pi)^3 2E_1} \frac{d^3q_2}{(2\pi)^3 2E_2} \frac{d^3q_3}{(2\pi)^3 2E_3}$$

$$\frac{1}{64} \sum |\mathcal{A}|^2 \frac{M}{4m_1 m_2 m_3} |\frac{\Psi(0,0)}{\sqrt{d!}}|^2.$$
(2)

The differential cross section of $pp \to \Omega^S_{Q_1Q_2Q_3} \bar{Q}_1 \bar{Q}_2 \bar{Q}_3 + X$ is:

$$\frac{d\sigma}{dP_T} = \frac{1}{d!} \int dx_1 dx_2 f_{g_1}(x_1, Q) f_{g_2}(x_2, Q) \frac{d\hat{\sigma}}{dP_T}$$
(3)

1.3 Numerical results and conclusions for the triply heavy baryons production

. The parameters:

mass:

$$m_c=1.5$$
 GeV, $m_b=4.9$ GeV, and $M=m_1+m_2+m_3$,

wave function at the origin:

$$|\Psi(0,0)|^2 = 0.00610 \text{ GeV}^6$$
 for Ω_{ccc} ,
 $|\Psi(0,0)|^2 = 0.00746 \text{ GeV}^6$ for Ω^*_{ccb} and Ω_{ccb}

energy scales:

$$Q{=}\mu_R/2$$
, μ_R , where $\mu_R^2{=}P_T^2{+}M^2$.

向下 イヨト イヨト

Table: Hadronic Production Cross sections (in unit nb) of the triply heavy baryons at LHC with $\sqrt{s}=7.0$ TeV. Some typical P_T cuts are adopted. As for the pseudo-rapidity cut, we take $|\eta|<2.5$ for CMS and ATLAS, and $1.9<\eta<4.9$ for LHCb.

-	-	LHC (CMS, ATLAS)		LHCb	
-	η_{cut} P_{Tcut}	$ \eta < 2.5$		$1.9 < \eta < 4.9$	
Q	-	μ_R	$\mu_R/2$	μ_R	$\mu_R/2$
Ω_{ccc}	0GeV	0.0604(6)	0.132(1)	0.0329(3)	0.0724(7)
-	5GeV	0.00599(8)	0.0140(3)	0.00163(3)	0.00391(6)
-	10GeV	2.6(1)E-4	6.3(2)E-4	4.8(1)E-5	1.21(2)E-4
Ω_{ccb}^{*}	0GeV	0.00151(1)	0.00351(2)	7.24(6)E-4	0.00172(2)
-	5GeV	6.49(5)E-4	0.00152(1)	1.89(1)E-4	4.54(4)E-4
-	10GeV	9.62(7)E-5	2.26(2)E-4	1.95(2)E-5	4.67(5)E-5
Ω_{ccb}	0GeV	4.89(3)E-4	0.00114(1)	2.15(1)E-4	5.09(4)E-4
-	5GeV	2.43(2)E-4	5.67(4)E-4	6.86(5)E-5	1.65(1)E-4
-	10GeV	4.49(4)E-5	1.05(1)E-4	0.894(9)E-5	2.13(2)E-5

・ロン ・回と ・ヨン・

Table: Hadronic Production Cross sections (in unit nb) of the triply heavy baryons at LHC with $\sqrt{s} = 14.0$ TeV. There typical P_T cuts are adopted. For the pseudo-rapidity cut, we take $|\eta| < 2.5$ for CMS and ATLAS, and $1.9 < \eta < 4.9$ for LHCb.

-	-	LHC (CMS, ATLAS)		Lŀ	łCb
-	η_{cut} P_{Tcut}	$ \eta < 2.5$		$1.9 < \eta < 4.9$	
Q	-	μ_R	$\mu_R/2$	μ_R	$\mu_R/2$
Ω_{ccc}	0GeV	0.113(1)	0.216(3)	0.0684(6)	0.135(2)
-	5GeV	0.0123(2)	0.0258(5)	0.00412(8)	0.00906(9)
-	10GeV	0.000625(9)	0.00136(2)	0.000145(5)	0.000349(6)
Ω_{ccb}^{*}	0GeV	0.00320(2)	0.00677(5)	0.00175(2)	0.00378(3)
-	5GeV	0.00143(1)	0.00307(3)	0.000521(4)	0.00114(1)
-	10GeV	2.34(2)E-4	5.03(5)E-4	0.625(7)E-4	1.38(2)E-4
Ω_{ccb}	0GeV	0.00105(1)	0.00222(2)	0.000527(3)	0.00115(1)
-	5GeV	0.000544(5)	0.00117(1)	0.000190(1)	0.000419(3)
-	10GeV	0.000109(1)	0.000236(2)	0.289(4)E-4	0.639(8)E-4

(4回) (日) (日)

Figure: The P_T -distributions of the production cross sections of the baryons with three heavy quarks in CMS and ATLAS at $\sqrt{s}=7$ TeV.

Figure: The P_T -distributions of the production cross sections of the baryons with three heavy quarks in LHCb at $\sqrt{s}=7$ TeV.

Figure: The y-distributions of the production cross sections of the baryons with three heavy quarks at LHC, with $\sqrt{s}=7$ TeV.

Table: The events with a luminosity of $L \sim 2 \times 10^{32} cm^{-2} s^{-1}$ and $P_T > 5$ GeV in unit (year⁻¹).

$\sqrt{s}(\text{TeV})$	baryon	CMS, ATLAS		LHCb	
	-	$Q = \mu_R$	$Q = \mu_R/2$	$Q = \mu_R$	$Q = \mu_R/2$
	Ω_{ccc}	3.6 ·10 ⁴	$8.4 \cdot 10^4$	9.8·10 ³	$2.3 \cdot 10^4$
7	Ω^*_{ccb}	3.9 ·10 ³	9.1·10 ³	$1.1 \cdot 10^{3}$	$2.7 \cdot 10^3$
	Ω_{ccb}	$1.5 \cdot 10^3$	$3.4 \cdot 10^3$	412	990

Table: The events with a luminosity of $L \sim 1 \times 10^{34} cm^{-2} s^{-1}$, and with $P_T > 5$ GeV in LHCb and $P_T > 10$ GeV in in ATLAS and CMS. (year⁻¹)

$\sqrt{s}(\text{TeV})$	baryon	CMS, ATLAS		LHCb	
	-	$Q = \mu_R$	$Q = \mu_R/2$	$Q = \mu_R$	$Q = \mu_R/2$
	Ω_{ccc}	$1.8 \cdot 10^5$	$4.2 \cdot 10^5$	$1.2 \cdot 10^{6}$	$2.8 \cdot 10^6$
14	Ω^*_{ccb}	$7.0 \cdot 10^4$	$1.5 \cdot 10^5$	$1.6 \cdot 10^5$	$3.3 \cdot 10^5$
	Ω_{ccb}	$3.3 \cdot 10^4$	$7.1 \cdot 10^4$	$5.7 \cdot 10^4$	$1.3 \cdot 10^5$

▲圖▶ ▲理▶ ▲理▶

2.1 Production of six free heavy quarks

.Feynman diagrams

727: three pairs quarks with different flavors:

 $gg \to c \bar{c} b \bar{b} t \bar{t}$

1454: two of the final three quarks with the same flavor,

eg. $gg \rightarrow c\bar{c}c\bar{c}b\bar{b}$

4362: three quarks with the same flavor,

eg. $gg \rightarrow c\bar{c}c\bar{c}c\bar{c}c$

高 と く ヨ と く ヨ と

.there are 72 independent color factors

.a more integer, 'L', is asked to produce and describe the Feynman diagrams

.the integral dimensions of phase space are much more

running time:

 $pp \rightarrow c\bar{c}c\bar{c}c\bar{c}c + X$: event: 12800, time: 4 s , computer: 128-core

(Madgraph: $pp \rightarrow l^+l^-jjjj$, 10000, MG4: 7:16 h, MG5: 2:45 h) (In MG: $p, j = g/u/\bar{u}/d/\bar{d}/s/\bar{s}/c/\bar{c}$)

・ 同 ト ・ ヨ ト ・ ヨ ト …

Table: Hadronic Production Cross sections (in unit nb) of three pairs of free quarks at LHC with $\sqrt{s}=7.0$ TeV. Some typical P_T cuts are adopted. As for the pseudo-rapidity cut, we take $|\eta|<2.5$

final states P_{Tcut}	0~GeV	5~GeV	10~GeV
$car{c}car{c}bar{b}$	15.9(1)	1.23(2)	0.121(3)
$car{c}bar{b}bar{b}$	2.56(3)	0.488(9)	0.066(1)
$c\bar{c}c\bar{c}c\bar{c}$	40.4(4)	1.02(3)	0.071(2)
$bar{b}bar{b}bar{b}$	0.154(1)	0.0622(7)	0.0122(2)

個 と く ヨ と く ヨ と

Table: Hadronic Production Cross sections (in unit nb) of three pairs of free quarks at LHC with $\sqrt{s}=14.0$ TeV. Some typical P_T cuts are adopted. As for the pseudo-rapidity cut, we take $|\eta|<2.5$

final states P_{Tcut}	0~GeV	5~GeV	10~GeV
$car{c}car{c}bar{b}$	32.0(2)	3.27(7)	0.41(2)
$car{c}bar{b}bar{b}$	5.87(8)	1.33(4)	0.228(6)
$c\bar{c}c\bar{c}c\bar{c}$	69.28)	2.60(8)	0.225(8)
$bar{b}bar{b}bar{b}$	0.401(3)	0.183(3)	0.0417(7)

・ロト ・回ト ・ヨト ・ヨト

Figure: The differential cross sections, with M being the invariant mass of the final states and \sqrt{s} =14 TeV.

イロン イヨン イヨン イヨン

æ

Figure: $1:gg \rightarrow c\bar{c}c\bar{c}c\bar{c}$ and $2:gg \rightarrow b\bar{b}b\bar{b}b\bar{b}$, with n being the number of final particles who has $P_T > P_{Tmin}$, and with $\sqrt{s}=14$ TeV.

- 4 回 2 - 4 □ 2 - 4 □

æ

Figure: $gg \rightarrow c\bar{c}c\bar{c}b\bar{b}$,with n being the number of four $c(\bar{c})$ quarks who has $P_T > P_{Tmin}$ and no cut for two *b* quarks in first fig and both *b* quarks $P_T > 10$ GeV in the second fig, and with $\sqrt{s}=14$ TeV.

Figure: $gg \rightarrow c\bar{c}b\bar{b}b\bar{b}$,with n being the number of four $b(\bar{b})$ quarks who has $P_T > P_{Tmin}$ and no cut for two c quarks in first fig and both c quarks $P_T > 10$ GeV in the second fig, and with $\sqrt{s}=14$ TeV.

Thanks!