Order－v^{4} Relativistic Corrections to Υ Inclusive Decay into a

Charm pair

桑文龙

In collaboration with Hai－Ting Chen and Yu－Qi chen高能所理论物理室

Outline

Motivations

NRQCD factorization formula

Treatment in detail

Summaries

Motivations

(1) NLO relativistic corrections are extremely large

	r	$\Gamma^{(0)}(\mathrm{keV})$	$\Gamma^{(2)}(\mathrm{keV})$	$\Gamma^{(2)} / \Gamma^{(0)}$	$G_{1}\left({ }^{3} S_{1}\right) / F_{1}\left({ }^{3} S_{1}\right)$
$J / \psi \rightarrow e^{+} e^{-} g g$	1.08×10^{-7}	4.73×10^{-1}	-5.91×10^{-1}	-125%	-5.56
$J / \psi \rightarrow \mu^{+} \mu^{-} g g$	4.69×10^{-3}	1.08×10^{-1}	-1.57×10^{-1}	-145%	-6.49
$\psi(2 S) \rightarrow e^{+} e^{-} g g$	7.66×10^{-8}	2.43×10^{-1}	-8.56×10^{-1}	-352%	-5.55
$\psi(2 S) \rightarrow \mu^{+} \mu^{-} g g$	3.31×10^{-3}	5.98×10^{-2}	-2.41×10^{-1}	-403%	-6.37
$\Upsilon(1 S) \rightarrow e^{+} e^{-} g g$	1.16×10^{-8}	3.68×10^{-2}	-1.16×10^{-2}	-31.5%	-5.53
$\Upsilon(1 S) \rightarrow \mu^{+} \mu^{-} g g$	5.02×10^{-4}	1.22×10^{-2}	-4.16×10^{-3}	-34.0%	-5.97
$\Upsilon(1 S) \rightarrow \tau^{+} \tau^{-} g g$	1.41×10^{-1}	1.05×10^{-3}	-7.06×10^{-4}	-67.3%	-11.8
$\Upsilon(1 S) \rightarrow c \bar{c} g g$	1.56×10^{-1}	1.44	-1.01	-70.4%	-12.4
$\Upsilon(2 S) \rightarrow c \bar{c} g g$	1.39×10^{-1}	7.99×10^{-1}	-1.68	-210%	-11.7
$\Upsilon(3 S) \rightarrow c \bar{c} g g$	1.30×10^{-1}	6.63×10^{-1}	-1.90	-287%	-11.4

It needs to check the convergence of relativistic expansion

Motivations

(2) There exists double IR divergence.

The two gluons become soft

It is interesting and technically challenging to cancel the IR divergence and obtain a IR-independent decay rate

NRQCD factorization formula

Scales in quarkonium. v signifies the typical velocity in quarkonium

$$
\text { "soft" } \longrightarrow \text { "Hard" }
$$

$$
c \bar{c}: v^{2} \approx 0.3 \quad b \bar{b}: v^{2} \approx 0.1
$$

NRQCD factorization formula

NRQCD factorization

长距离矩阵元 a．描述正反夸克对演变成色单态强子过程 b．按 \mathbf{v} 展开的。
c．通过非微扰途径得
到，比如势模型，格点QCD，或者通过实验匹配

NRQCD因子化公式是按 α_{s} 和 v 双重展开

The factorization formula for $\quad \Upsilon \rightarrow c \bar{c}+X$

$$
\begin{aligned}
& d \Gamma[\Upsilon \rightarrow \bar{c}+X] \\
& =\frac{\left.d F_{1} S^{3} S_{1}^{[1]}\right)}{m^{2}}\left\langle\mathcal{O}\left({ }^{3} S_{1}^{[1]}\right)\right\rangle r+\frac{d F_{2}\left(3 S^{[1]}\right)}{m^{4}}\left\langle\mathcal{P}\left({ }^{3} S_{1}^{[1]}\right)\right\rangle \Upsilon+\frac{d F\left({ }^{1} S_{0}^{[8]}\right)}{m^{2}}\left\langle\mathcal{O}\left(S_{0}^{1} S_{0}^{[8]}\right)\right\rangle \Upsilon \\
& +\frac{d F_{3}\left({ }^{3} S_{1}^{[1]}\right.}{m^{6}}\left\langle\mathcal{Q}_{1}\left({ }^{3} S_{1}^{[1]}\right)\right\rangle \Upsilon+\frac{d F_{4}{ }^{3} S^{3} S_{1}^{[1]}}{m^{6}}\left\langle\mathcal{Q}_{2}\left({ }^{3} S_{1}^{(1)}\right)\right\rangle \Upsilon \\
& \left.+\frac{d F\left({ }^{3} S_{1}^{[8]}\right)}{m^{2}}\left\langle\mathcal{O}^{3} S_{1}^{[8]}\right)\right\rangle \mathrm{r}+\sum_{J=0,1,2} \frac{d F\left({ }^{3} P_{J}^{[8]}\right.}{m^{4}}\left\langle\mathcal{O}\left({ }^{3} P_{J}^{[8]}\right)\right\rangle \mathrm{r},
\end{aligned}
$$

The factorization formula for $\Upsilon \rightarrow c \bar{c}+X$

relative order v^{0}
$d \Gamma[\Upsilon \rightarrow c \bar{c}+X]$
$\left.=\frac{d F_{1}\left({ }^{3} S_{1}^{[1]}\right)}{m^{2}}\left\langle\mathcal{O}{ }^{3} S_{1}^{[1]}\right)\right\rangle \Upsilon+\frac{d F_{2}\left({ }^{3} S_{1}^{[1]}\right)}{m^{4}}\left\langle\mathcal{P}\left({ }^{3} S_{1}^{[1]}\right)\right\rangle \Upsilon+\frac{d F\left({ }^{1} S_{0}^{[8]}\right)}{m^{2}}\left\langle\mathcal{O}\left({ }^{1} S_{0}^{[8]}\right)\right\rangle \Upsilon$
$d F_{3}\left({ }^{3} S^{[1]}\right)$
$+\frac{m^{6}}{m^{6}}\left\langle\mathcal{Q}_{1}\left({ }^{3} S_{1}^{[1]}\right)\right\rangle \Upsilon+\frac{{ }^{6}}{m^{6}}\left\langle\mathcal{Q}_{2}\left({ }^{3} S_{1}^{[1]}\right)\right\rangle \Upsilon$
$+\frac{d F\left({ }^{3} S_{1}^{[8]}\right)}{2}\left\langle\mathcal{O}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle \Upsilon+\sum_{J=0,1,2} \frac{d F\left({ }^{3} P_{J}^{[8]}\right)}{m^{4}}\left\langle\mathcal{O}\left({ }^{3} P_{J}^{[8]}\right)\right\rangle \Gamma$,

Matching precedure

Through perturbative process $b \bar{b}\left({ }^{3} S_{1}^{[1]}\right) \rightarrow c \bar{c} g g$

$$
\begin{aligned}
d \Gamma\left({ }^{3} S_{1}^{[1]}\right)= & \frac{d F_{3}\left({ }^{3} S_{1}^{[1]}\right)}{m^{6}}\left\langle\mathcal{Q}_{1}\left({ }^{3} S_{1}^{[1]}\right)\right\rangle_{H}+\frac{d F_{4}\left({ }^{3} S_{1}^{[1]}\right)}{m^{6}}\left\langle\mathcal{Q}_{2}\left({ }^{3} S_{1}^{[1]}\right)\right\rangle_{H} \\
& +\frac{d F\left({ }^{3} S_{1}^{[8]}\right)}{m^{2}}\left\langle\mathcal{O}\left({ }^{3} S_{1}^{[8]}\right)\right\rangle\left(\mathbb{H}+\sum_{J} \frac{d F\left({ }^{3} P_{J}^{[8]}\right)}{m^{4}}\left\langle\mathcal{O}\left({ }^{3} P_{J}^{[8]}\right)\right\rangle_{H},\right. \\
& b \bar{b}\left({ }^{3} S_{1}^{[1]}\right)
\end{aligned}
$$

Matching precedure

Matching precedure

$=d F\left(3 s_{1}^{[1]}\right) \times$

$$
\cdots
$$

Matching precedure

Matching precedure

$=d F\left({ }^{3} P_{J}^{[8]}\right) \times$

$+d F\left({ }^{3} S_{1}^{[8]}\right) \times$

Matching precedure

Perturbative NRQCD matrix elements

$=1$

Perturbative NRQCD matrix elements

$$
\begin{aligned}
I_{a}= & \frac{\left(i g_{s}\right)^{2}}{4 m^{2}} \frac{-1}{N_{c}} T^{a} \otimes T^{a} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{i}{p^{0}-k^{0}-\frac{(\overrightarrow{\boldsymbol{p}}-\overrightarrow{\boldsymbol{k}})^{2}}{2 m}+i \epsilon} \frac{i}{p^{\prime 0}-k^{0}-\frac{\left(\overrightarrow{\left.\boldsymbol{p}^{\prime}-\overrightarrow{\boldsymbol{k}}\right)^{2}}\right.}{2 m}+i \epsilon} \\
& \times \frac{4 i\left(\boldsymbol{p} \cdot \boldsymbol{p}^{\prime}-\boldsymbol{p} \cdot \boldsymbol{k} \boldsymbol{p}^{\prime} \cdot \boldsymbol{k} / \boldsymbol{k}^{2}\right)}{k^{2}+i \epsilon} \boldsymbol{p} \cdot \boldsymbol{p}^{\prime} \\
= & -\frac{g_{s}^{2}}{2 m^{2}} \frac{T^{a} \otimes T^{a}}{N_{c}} \boldsymbol{p} \cdot \boldsymbol{p}^{\prime} \boldsymbol{p} \cdot \boldsymbol{p}^{\prime} \frac{d-2}{d-1} \int \frac{d^{d-1} k}{(2 \pi)^{d-1}} \frac{1}{|\boldsymbol{k}|^{3}} \\
= & -\frac{g_{s}^{2}}{2 m^{2}} \frac{T^{a} \otimes T^{a}}{N_{c}} \frac{\boldsymbol{p}^{2} \boldsymbol{p}^{\prime 2}}{d-1} \frac{d-2}{d-1} \int \frac{d^{d-1} k}{(2 \pi)^{d-1}} \frac{1}{|\boldsymbol{k}|^{3}} \\
= & -\frac{\alpha_{s}}{3 \pi m^{2}} \frac{T^{a} \otimes T^{a}}{N_{c}}\left(\frac{\tilde{f}_{\epsilon}}{\epsilon_{\mathrm{UV}}} \frac{\boldsymbol{p}^{4}}{d-1}-\frac{\tilde{f}_{\epsilon}}{\epsilon_{\mathrm{IR}}} \frac{\boldsymbol{p}^{4}}{d-1}\right)
\end{aligned}
$$

Perturbative NRQCD matrix elements

$$
I_{a}=\frac{\left(i g_{s}\right)^{2}}{4 m^{2}} \frac{-1}{N_{c}} T^{a} \otimes T^{a} \int \frac{d^{d} k}{(2 \pi)^{d}} \frac{i}{p^{0}-k^{0}-\frac{(\overrightarrow{\boldsymbol{p}}-\overrightarrow{\boldsymbol{k}})^{2}}{2 m}+i \epsilon} \frac{i}{p^{0}-k^{0}-\frac{\left(\overrightarrow{\boldsymbol{p}^{\prime}}-\overrightarrow{\boldsymbol{k}}\right)^{2}}{2 m}+i \epsilon}
$$

$$
\times \frac{4 i\left(\boldsymbol{p} \cdot \boldsymbol{p}^{\prime}-\boldsymbol{p} \cdot \boldsymbol{k} \boldsymbol{p}^{\prime} \cdot \boldsymbol{k} / \boldsymbol{k}^{2}\right)}{k^{2}+i \epsilon} \boldsymbol{p} \cdot \boldsymbol{p}^{\prime} \quad \rightarrow \text { From loop integration }
$$

$$
=-\frac{g_{s}^{2}}{2 m^{2}} \frac{T^{a} \otimes T^{a}}{N_{c}} \boldsymbol{p} \cdot \boldsymbol{p}^{\prime} \boldsymbol{p} \cdot \boldsymbol{p} \frac{d-2}{d-1} \int \frac{d^{d-1} k}{(2 \pi)^{d-1}} \frac{1}{|\boldsymbol{k}|^{3}}
$$

$$
=-\frac{g_{s}^{2}}{2 m^{2}} \frac{T^{a} \otimes T^{a} \boldsymbol{p}^{2} \boldsymbol{p}^{\prime 2}}{N_{c}} \frac{d-2}{d-1} \int \frac{d^{d-1} k}{(2 \pi)^{d-1}} \frac{1}{|\boldsymbol{k}|^{3}}
$$

$$
=-\frac{\alpha_{s}}{3 \pi m^{2}} \frac{T^{a} \otimes T^{a}}{N_{c}}\left(\frac{\tilde{f}_{\epsilon}}{\epsilon_{\mathrm{UV}}} \frac{p^{4}}{d-1}-\frac{\tilde{f}_{\epsilon}}{\epsilon_{\mathrm{IR}}} \frac{p^{4}}{d-1}\right)
$$

Perturbative NRQCD matrix elements

(d)

(e)

(a)

(f)

(k)

(b)

(g)

(l)

(q)

(c)

(h)

(m)

(r)

(j)

(o)

(p)
(i)

(n)

Perturbative NRQCD matrix elements

Summing all the contributions

$$
\begin{aligned}
I & =\frac{5}{54} \frac{2 g_{s}^{4}}{m^{4}} \frac{(d-2)^{2}}{(d-1)^{2}} 1 \otimes 1 \int \frac{d^{d-1} k}{(2 \pi)^{d-1}} \int \frac{d^{d-1} l}{(2 \pi)^{d-1}} \frac{\left(\boldsymbol{p} \cdot \boldsymbol{p}^{\prime}\right)^{2}}{|\boldsymbol{k}|^{3}|\boldsymbol{l}|^{3}} \\
& =\frac{20 \alpha_{s}^{2}}{243 \pi^{2}(d-1)} \frac{\boldsymbol{p}^{4}}{m^{4}}\left(\frac{\tilde{f}_{\epsilon}}{\epsilon_{\mathrm{UV}}}-\frac{\tilde{f}_{\epsilon}}{\epsilon_{\mathrm{IR}}}\right)^{2} 1 \otimes 1
\end{aligned}
$$

Renormalization to cancel the UV divergence

$$
\mathcal{O}\left({ }^{3} S_{1}^{[8]}\right)_{\overline{\mathrm{MS}}}=\mathcal{O}\left({ }^{3} S_{1}^{[8]}\right)+\delta_{1} \mathcal{O}+\delta_{2} \mathcal{O}+\mathcal{O}\left(\alpha_{s}^{3}\right)
$$

Determining short-distance coefficients

$$
\begin{aligned}
\frac{d F\left({ }^{3} S_{1}^{[8]}\right)}{d z}= & \frac{\pi \alpha_{s} L}{2} \delta(1-z) \\
\frac{d F\left({ }^{3} P_{J}^{[8]}\right)}{d z}= & \frac{-5 \alpha_{s}^{2} L}{18}\left\{\left[\ln \frac{\mu^{2}}{M^{2}}+\frac{5}{3}-2 \ln (1-r)\right] \delta(1-z)-2\left(\frac{1}{1-z}\right)_{+}+A_{J}\right\} \\
\frac{d F\left({ }^{3} S_{1}^{[1]}\right)}{d z}= & \frac{d F_{d}\left({ }^{3} S_{1}^{[1]}\right)}{d z}+\frac{d F_{s}\left({ }^{3} S_{1}^{[1]}\right)}{d z}+\frac{d F_{r}\left({ }^{3} S_{1}^{[1]}\right)}{d z} \\
\frac{d F_{d}\left({ }^{3} S_{1}^{[1]}\right)}{d z}= & \frac{10 \alpha_{s}^{3} L}{729 \pi}\left\{\left[\ln ^{2} \frac{\mu^{2}}{M^{2}}+\frac{10-12 \ln (1-r)}{3} \ln \frac{\mu^{2}}{M^{2}}+4 \ln ^{2}(1-r)-\frac{20}{3} \ln (1-r)+\frac{25}{9}\right.\right. \\
& \left.\left.-\frac{2 \pi^{2}}{3}\right] \delta(1-z)-\left(\frac{1}{1-z}\right)_{+}\left[4 \ln \frac{\mu^{2}}{M^{2}}+2 \ln z+\frac{20}{3}\right]+8\left(\frac{\ln (1-z)}{1-z}\right)_{+}\right\}
\end{aligned}
$$

Numerical results

Ratios of short distance coefficients

	r	$F_{2}\left({ }^{3} S_{1}^{[1]}\right) / F_{1}\left({ }^{3} S_{1}^{[1]}\right)$	$\left.F\left({ }^{3} S_{1}^{[1]}\right) / F_{1}{ }^{3} S_{1}^{[1]}\right)$
$\Upsilon(1 S)$	1.56×10^{-1}	-12.4	$19.4+0.6 \ln ^{2}\left(\frac{\mu^{2}}{M^{2}}\right)+0.9 \ln \left(\frac{\mu^{2}}{M^{2}}\right)$
$\Upsilon(2 S)$	1.39×10^{-1}	-11.7	$18.5+0.5 \ln ^{2}\left(\frac{\mu^{2}}{M^{2}}\right)+0.6 \ln \left(\frac{\mu^{2}}{M^{2}}\right)$
$\Upsilon(3 S)$	1.30×10^{-1}	-11.4	$18.0+0.5 \ln ^{2}\left(\frac{\mu^{2}}{M^{2}}\right)+0.4 \ln \left(\frac{\mu^{2}}{M^{2}}\right)$

Numerical results

Ratios of short distance coefficients

	r	$F_{2}\left({ }^{3} S_{1}^{[1]}\right) / F_{1}\left({ }^{3} S_{1}^{[1]}\right)$		$F\left({ }^{3} S_{1}^{[1]}\right) / F_{1}\left({ }^{3} S_{1}^{[1]}\right)$
$\Upsilon(1 S)$	1.56×10^{-1}	-12.4	$19.4+0.6 \ln ^{2}\left(\frac{\mu^{2}}{M^{2}}\right)+0.9 \ln \left(\frac{\mu^{2}}{M^{2}}\right)$	
$\Upsilon(2 S)$	1.39×10^{-1}	-11.7	$18.5+0.5 \ln ^{2}\left(\frac{\mu^{2}}{M^{2}}\right)+0.6 \ln \left(\frac{\mu^{2}}{M^{2}}\right)$	
$\Upsilon(3 S)$	1.30×10^{-1}	-11.4	$18.0+0.5 \ln ^{2}\left(\frac{\mu^{2}}{N^{2}}\right)+0.4 \ln \left(\frac{\mu^{2}}{N^{2}}\right)$	

Summaries

(1) The IR divergence appeared in matching precedure can be canceled through color-octet mechanism. It needs to carefully carry out the renormalization.
(2) The relativistic expansion for color-singlet contribution converges very well
(3) Through extrapolating the mass ratio of charm quark to bottom quark, we find the relativistic corrections rise rapidly with increase of the ratio.

谢 谢!

