

HFCPV-2012 10.24-28 青岛

### Outline

Motivations NRQCD factorization formula Treatment in detail **Summaries** 

### Motivations

#### (1) NLO relativistic corrections are extremely large

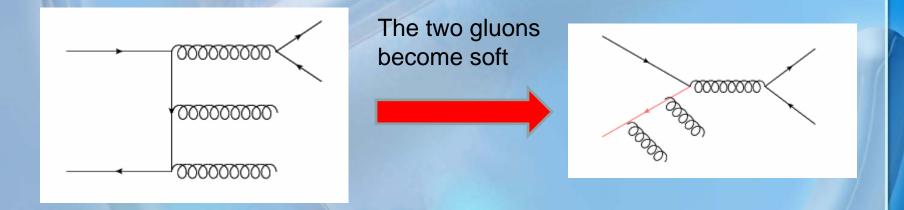
|                                     | r                     | $\Gamma^{(0)}({\rm keV})$ | $\Gamma^{(2)}({\rm keV})$ | $\Gamma^{(2)}/\Gamma^{(0)}$ | $G_1(^3S_1)/F_1(^3S_1)$ |
|-------------------------------------|-----------------------|---------------------------|---------------------------|-----------------------------|-------------------------|
| $J/\psi \to e^+e^-gg$               | $1.08 \times 10^{-7}$ | $4.73 \times 10^{-1}$     | $-5.91 \times 10^{-1}$    | -125%                       | -5.56                   |
| $J/\psi \to \mu^+ \mu^- gg$         | $4.69\times10^{-3}$   | $1.08\times10^{-1}$       | $-1.57 \times 10^{-1}$    | -145%                       | -6.49                   |
| $\psi(2S) \to e^+e^-gg$             | $7.66 \times 10^{-8}$ | $2.43\times10^{-1}$       | $-8.56 \times 10^{-1}$    | -352%                       | -5.55                   |
| $\psi(2S) \to \mu^+ \mu^- gg$       | $3.31\times10^{-3}$   | $5.98 \times 10^{-2}$     | $-2.41 \times 10^{-1}$    | -403%                       | -6.37                   |
| $\Upsilon(1S) \to e^+e^-gg$         | $1.16\times10^{-8}$   | $3.68 \times 10^{-2}$     | $-1.16 \times 10^{-2}$    | -31.5%                      | -5.53                   |
| $\Upsilon(1S) \to \mu^+ \mu^- gg$   | $5.02 \times 10^{-4}$ | $1.22\times10^{-2}$       | $-4.16 \times 10^{-3}$    | -34.0%                      | -5.97                   |
| $\Upsilon(1S) \to \tau^+ \tau^- gg$ | $1.41\times10^{-1}$   | $1.05 \times 10^{-3}$     | $-7.06 \times 10^{-4}$    | -67.3%                      | -11.8                   |
| $\Upsilon(1S) \to c\bar{c}gg$       | $1.56\times10^{-1}$   | 1.44                      | -1.01                     | -70.4%                      | -12.4                   |
| $\Upsilon(2S) \to c\bar{c}gg$       | $1.39\times10^{-1}$   | $7.99 \times 10^{-1}$     | -1.68                     | -210%                       | -11.7                   |
| $\Upsilon(3S) \to c\bar{c}gg$       | $1.30 \times 10^{-1}$ | $6.63 \times 10^{-1}$     | -1.90                     | -287%                       | -11.4                   |

It needs to check the convergence of relativistic expansion

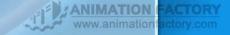


### Motivations

(2) There exists double IR divergence.

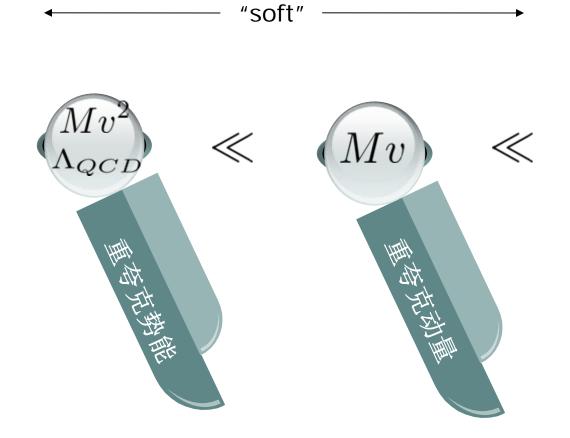


It is interesting and technically challenging to cancel the IR divergence and obtain a IR-independent decay rate



### **NRQCD** factorization formula

Scales in quarkonium.  $\,v\,$  signifies the typical velocity in quarkonium



"Hard"



 $c\bar{c}: v^2 \approx 0.3$   $b\bar{b}: v^2 \approx 0.1$ 



### **NRQCD** factorization formula

# NRQCD factorization

#### 长距离矩阵元

- a.描述正反夸克对演 变成色单态强子过程
- b.按v展开的。
- c.通过非微扰途径得到,比如势模型、格点QCD、或者通过实验匹配

#### 短距离系数

- a.描述正反重夸克对 产生或湮灭的过程
- b.按照耦合常数展开
- c.是微扰可算的,

NRQCD因子化公式是按 a s和v双重展开



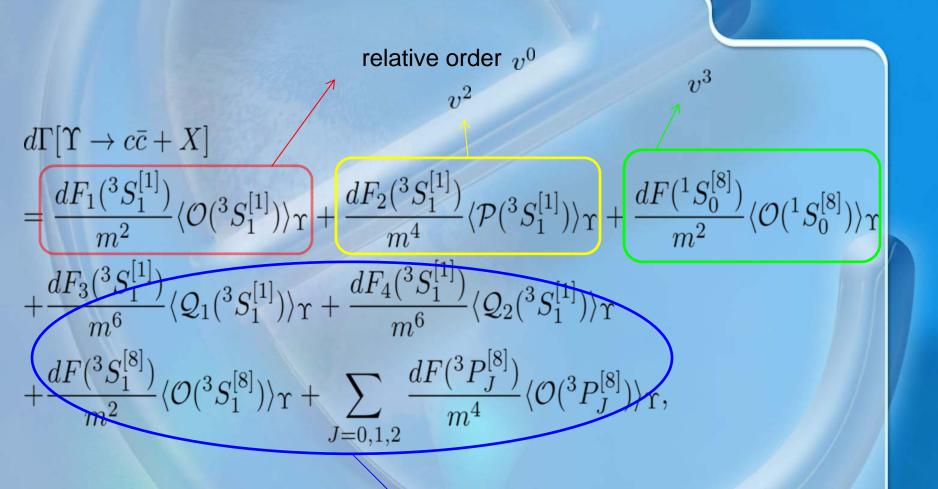
### The factorization formula for

$$\Upsilon \to c\bar{c} + X$$

$$\begin{split} &d\Gamma[\Upsilon \to c\bar{c} + X] \\ &= \frac{dF_1({}^3S_1^{[1]})}{m^2} \langle \mathcal{O}({}^3S_1^{[1]}) \rangle_{\Upsilon} + \frac{dF_2({}^3S_1^{[1]})}{m^4} \langle \mathcal{P}({}^3S_1^{[1]}) \rangle_{\Upsilon} + \frac{dF({}^1S_0^{[8]})}{m^2} \langle \mathcal{O}({}^1S_0^{[8]}) \rangle_{\Upsilon} \\ &+ \frac{dF_3({}^3S_1^{[1]})}{m^6} \langle \mathcal{Q}_1({}^3S_1^{[1]}) \rangle_{\Upsilon} + \frac{dF_4({}^3S_1^{[1]})}{m^6} \langle \mathcal{Q}_2({}^3S_1^{[1]}) \rangle_{\Upsilon} \\ &+ \frac{dF({}^3S_1^{[8]})}{m^2} \langle \mathcal{O}({}^3S_1^{[8]}) \rangle_{\Upsilon} + \sum_{J=0,1,2} \frac{dF({}^3P_J^{[8]})}{m^4} \langle \mathcal{O}({}^3P_J^{[8]}) \rangle_{\Upsilon}, \end{split}$$

### The factorization formula for

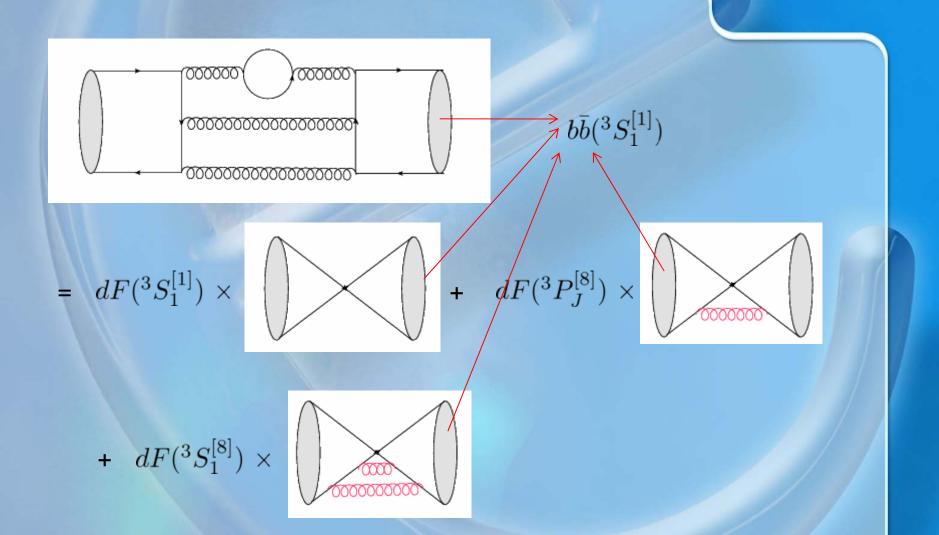


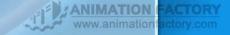


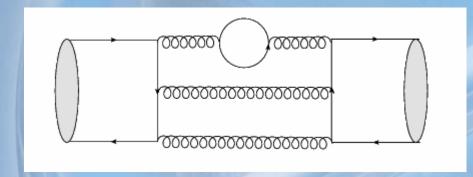
Through perturbative process  $b\bar{b}(^3S_1^{[1]}) \to c\bar{c}gg$ 

$$d\Gamma(^{3}S_{1}^{[1]}) = \frac{dF_{3}(^{3}S_{1}^{[1]})}{m^{6}} \langle \mathcal{Q}_{1}(^{3}S_{1}^{[1]}) \rangle_{H} + \frac{dF_{4}(^{3}S_{1}^{[1]})}{m^{6}} \langle \mathcal{Q}_{2}(^{3}S_{1}^{[1]}) \rangle_{H} + \frac{dF(^{3}S_{1}^{[8]})}{m^{6}} \langle \mathcal{O}(^{3}S_{1}^{[8]}) \rangle_{H} + \sum_{J} \frac{dF(^{3}P_{J}^{[8]})}{m^{4}} \langle \mathcal{O}(^{3}P_{J}^{[8]}) \rangle_{H},$$

$$b\bar{b}(^{3}S_{1}^{[1]})$$

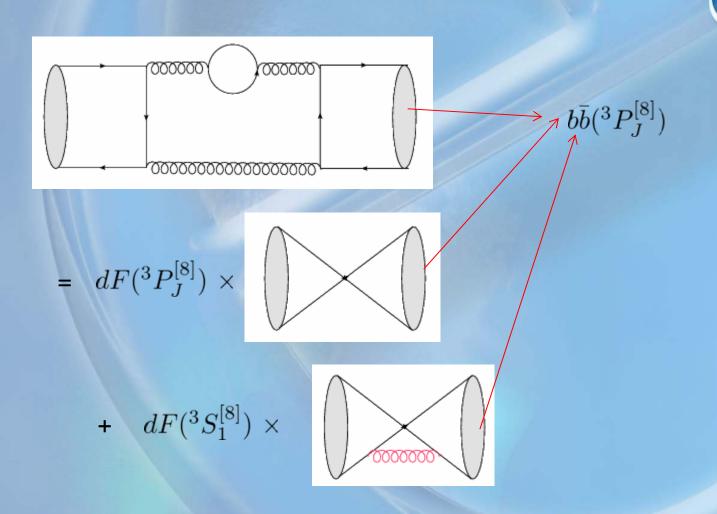




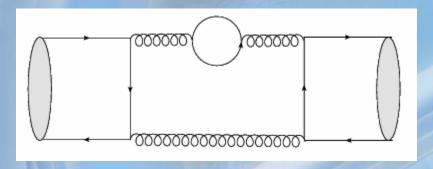


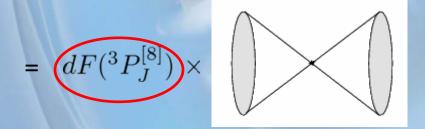
$$= dF(^{3}S_{1}^{[1]}) \times + dF(^{3}P_{J}^{[8]}) \times$$

+ 
$$dF(^3S_1^{[8]}) \times$$

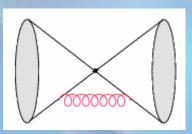


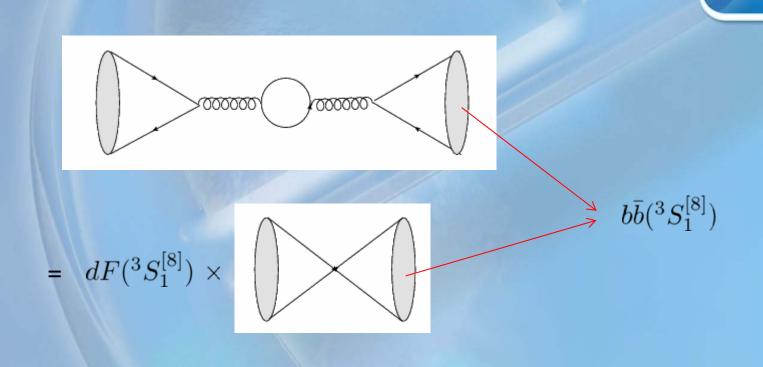




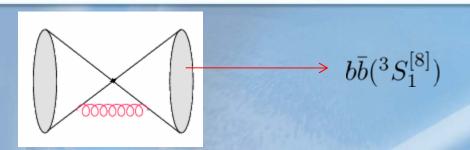


+ 
$$dF(^3S_1^{[8]}) \times$$







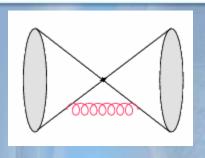


$$I_{a} = \frac{(ig_{s})^{2}}{4m^{2}} \frac{-1}{N_{c}} T^{a} \otimes T^{a} \int \frac{d^{d}k}{(2\pi)^{d}} \frac{i}{p^{0} - k^{0} - \frac{(\vec{p} - \vec{k})^{2}}{2m} + i\epsilon} \frac{i}{p'^{0} - k^{0} - \frac{(\vec{p}' - \vec{k})^{2}}{2m} + i\epsilon} \times \frac{4i(\mathbf{p} \cdot \mathbf{p}' - \mathbf{p} \cdot \mathbf{k}\mathbf{p}' \cdot \mathbf{k}/\mathbf{k}^{2})}{k^{2} + i\epsilon} \mathbf{p} \cdot \mathbf{p}'$$

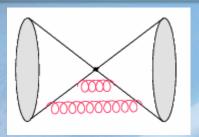
$$= -\frac{g_{s}^{2}}{2m^{2}} \frac{T^{a} \otimes T^{a}}{N_{c}} \mathbf{p} \cdot \mathbf{p}' \mathbf{p} \cdot \mathbf{p}' \frac{d - 2}{d - 1} \int \frac{d^{d - 1}k}{(2\pi)^{d - 1}} \frac{1}{|\mathbf{k}|^{3}}$$

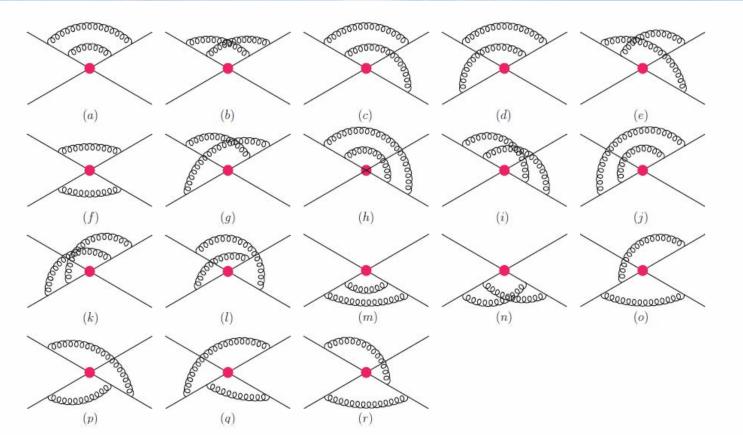
$$= -\frac{g_{s}^{2}}{2m^{2}} \frac{T^{a} \otimes T^{a}}{N_{c}} \frac{\mathbf{p}^{2}\mathbf{p}'^{2}}{d - 1} \frac{d - 2}{d - 1} \int \frac{d^{d - 1}k}{(2\pi)^{d - 1}} \frac{1}{|\mathbf{k}|^{3}}$$

$$= -\frac{\alpha_{s}}{3\pi m^{2}} \frac{T^{a} \otimes T^{a}}{N_{c}} \left(\frac{\tilde{f}_{\epsilon}}{\epsilon_{UV}} \frac{\mathbf{p}^{4}}{d - 1} - \frac{\tilde{f}_{\epsilon}}{\epsilon_{IR}} \frac{\mathbf{p}^{4}}{d - 1}\right)$$



$$\begin{split} I_{a} &= \frac{(ig_{s})^{2}}{4m^{2}} \frac{-1}{N_{c}} T^{a} \otimes T^{a} \int \frac{d^{d}k}{(2\pi)^{d}} \frac{i}{p^{0} - k^{0} - \frac{(\vec{p} - \vec{k})^{2}}{2m} + i\epsilon} \frac{i}{p'^{0} - k^{0} - \frac{(\vec{p'} - \vec{k})^{2}}{2m} + i\epsilon} \\ &\times \frac{4i(\boldsymbol{p} \cdot \boldsymbol{p'} - \boldsymbol{p} \cdot \boldsymbol{k} \boldsymbol{p'} \cdot \boldsymbol{k} / \boldsymbol{k}^{2})}{k^{2} + i\epsilon} \boldsymbol{p} \cdot \boldsymbol{p'} \boldsymbol{p} \cdot \boldsymbol{p'$$





#### Summing all the contributions

$$I = \frac{5}{54} \frac{2g_s^4}{m^4} \frac{(d-2)^2}{(d-1)^2} 1 \otimes 1 \int \frac{d^{d-1}k}{(2\pi)^{d-1}} \int \frac{d^{d-1}l}{(2\pi)^{d-1}} \frac{(\mathbf{p} \cdot \mathbf{p}')^2}{|\mathbf{k}|^3 |\mathbf{l}|^3}$$
$$= \frac{20\alpha_s^2}{243\pi^2 (d-1)} \frac{\mathbf{p}^4}{m^4} \left(\frac{\tilde{f}_{\epsilon}}{\epsilon_{\text{UV}}} - \frac{\tilde{f}_{\epsilon}}{\epsilon_{\text{IR}}}\right)^2 1 \otimes 1$$

Renormalization to cancel the UV divergence

$$\mathcal{O}(^{3}S_{1}^{[8]})_{\overline{MS}} = \mathcal{O}(^{3}S_{1}^{[8]}) + \delta_{1}\mathcal{O} + \delta_{2}\mathcal{O} + \mathcal{O}(\alpha_{s}^{3})$$

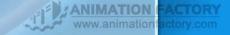
### **Determining short-distance coefficients**

$$\frac{dF(^{3}S_{1}^{[8]})}{dz} = \frac{\pi\alpha_{s}L}{2}\delta(1-z)$$

$$\frac{dF(^{3}P_{J}^{[8]})}{dz} = \frac{-5\alpha_{s}^{2}L}{18} \left\{ \left[ \ln\frac{\mu^{2}}{M^{2}} + \frac{5}{3} - 2\ln(1-r) \right] \delta(1-z) - 2\left(\frac{1}{1-z}\right)_{+} + A_{J} \right\}$$

$$\frac{dF(^{3}S_{1}^{[8]})}{dz} = \frac{dF_{d}(^{3}S_{1}^{[1]})}{dz} + \frac{dF_{s}(^{3}S_{1}^{[1]})}{dz} + \frac{dF_{r}(^{3}S_{1}^{[1]})}{dz}$$

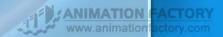
$$\frac{dF_d(^3S_1^{[1]})}{dz} = \frac{10\alpha_s^3L}{729\pi} \left\{ \left[ \ln^2 \frac{\mu^2}{M^2} + \frac{10 - 12\ln(1 - r)}{3} \ln \frac{\mu^2}{M^2} + 4\ln^2(1 - r) - \frac{20}{3} \ln(1 - r) + \frac{25}{9} - \frac{2\pi^2}{3} \right] \delta(1 - z) - \left( \frac{1}{1 - z} \right)_+ \left[ 4\ln \frac{\mu^2}{M^2} + 2\ln z + \frac{20}{3} \right] + 8\left( \frac{\ln(1 - z)}{1 - z} \right)_+ \right\}$$



## Numerical results

#### Ratios of short distance coefficients

| 1111           | r                   | $F_2(^3S_1^{[1]})/F_1(^3S_1^{[1]})$ | $F(^3S_1^{[1]})/F_1(^3S_1^{[1]})$                                  |
|----------------|---------------------|-------------------------------------|--------------------------------------------------------------------|
| $\Upsilon(1S)$ | $1.56\times10^{-1}$ | -12.4                               | $19.4 + 0.6 \ln^2(\frac{\mu^2}{M^2}) + 0.9 \ln(\frac{\mu^2}{M^2})$ |
| $\Upsilon(2S)$ | $1.39\times10^{-1}$ | -11.7                               | $18.5 + 0.5 \ln^2(\frac{\mu^2}{M^2}) + 0.6 \ln(\frac{\mu^2}{M^2})$ |
| $\Upsilon(3S)$ | $1.30\times10^{-1}$ | -11.4                               | $18.0 + 0.5 \ln^2(\frac{\mu^2}{M^2}) + 0.4 \ln(\frac{\mu^2}{M^2})$ |

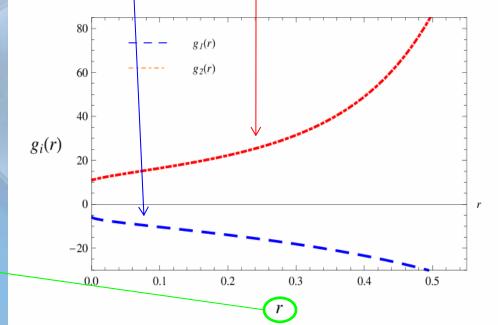


### **Numerical results**

#### Ratios of short distance coefficients

|                | r                     | $F_2(^3S_1^{[1]})/F_1(^3S_1^{[1]})$ |        | $F(^3S_1^{[1]})/F_1(^3S_1^{[1]})$                            |
|----------------|-----------------------|-------------------------------------|--------|--------------------------------------------------------------|
| $\Upsilon(1S)$ | $1.56\times10^{-1}$   | -12.4                               | 19.4 + | $-0.6 \ln^2(\frac{\mu^2}{M^2}) + 0.9 \ln(\frac{\mu^2}{M^2})$ |
| $\Upsilon(2S)$ | $1.39 \times 10^{-1}$ | -11.7                               | 18.5 + | $-0.5 \ln^2(\frac{\mu^2}{M^2}) + 0.6 \ln(\frac{\mu^2}{M^2})$ |
| $\Upsilon(3S)$ | $1.30 \times 10^{-1}$ | -11.4                               | 18.0 + | $-0.5 \ln^2(\frac{\mu^2}{M^2}) + 0.4 \ln(\frac{\mu^2}{M^2})$ |

The relativistic corrections rise rapidly with increase of r



 $\frac{m_c^2}{m_b^2}$ 

www.animationfactory.com

### Summaries

- (1) The IR divergence appeared in matching precedure can be canceled through color-octet mechanism. It needs to carefully carry out the renormalization.
- (2) The relativistic expansion for color-singlet contribution converges very well

(3) Through extrapolating the mass ratio of charm quark to bottom quark, we find the relativistic corrections rise rapidly with increase of the ratio.



