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I. Modeling the QCD phase diagram

guiding principles for constructing models of the QCD phases:

The symmetry associated with the center Z(3) of the local SU(3),
color gauge group is exact in the limit of pure gauge QCD, realized
for infinitely heavy quarks. In the high-T, deconfinement phase of is
spontaneously broken, with the Polyakov loop acting as the order
parameter.

Chiral SU(N;)gr X SU(N¢), symmetry is an exact global symmetry of
QCD with Nt massless quark flavors. In the low-T, this symmetry is
spontaneously broken down to the flavor group SU(N;),, As a
consequence there exist N — 1 pseudoscalar Nambu—Goldstone
bosons and the QCD vacuum hosts a strong quark condensate:

(V) = (YrYL + YLYR)
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IT. QCD phase structures based on
the Ginzburg-Landau approach

The Ginzburg—-Landau-Wilson approach:

(1) If the phase transition is of second order or of weak first
order, one may write down the free-energy functional in terms
of the order parameter field as a power series of @/T..

(2) The large fluctuation of near the critical point is then taken
iInto account by the renormalization group method.



2.1 The topological phase structures of
massless two-flavor systems

Chiral Symmetry

For massless two-flavor, a relevant order parameter for the chiral
phase transition is the color-singlet chiral condensate

®,; U (Ga; )
The most general form of the Ginzburg-Landau free energy of the
chiral field up to O(¢*) with sU (2)xSU,(2) symmetry reads

by b ‘
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Then the symmetry is breaking from su (2)xsU,(2) to U, (1)xU,(1)

The GL potential becomes: n=<mn, > <n,>=<m;>=0
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Normal (NOR) phase: 0=0, 7=0

Pion condensate (PC) phase: 0=0, m #0
Nanbu-Goldstone (NG) phase: 0+0, =0
Coexistence (COE) phase: 0#0, m #0



»Numerical results(1) with b>0 and >0
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»Numerical results(2) with b<0 and 3>0 or b>0 and 3<0
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‘ »Numerical results(3) with b<0 and 3<0
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2.2 Mapping with the Nambu-Jona-Lasinio
model at the chiral and isospin chemical

pofential
» NJL model

The two-flavor NJL Lagrangian
L= q(v,0, +mo — in1)q — Gs[(Gq)° + (qivs7q)?]
with [I = 1575 + ps 173

The thermodynamic potential is obtained in the mean-field
approximation a

Eln (1+ e FPhe )}—FUM

M.Huang, P.F.Zhuang and W.Q.Zhao,PRD65, 076012(2002) 12
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where By — \/(\/(p — Sli5)2 + M2 — fur)? + m?
M = my— o0, 0 = 2Gs(qq) and 7 = 2G(qiV5T1q)

UM — (0'2 + 7T2)/4GS
The mean-field values are determined by the stationary conditions

8!2_8!2_0
o Or
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few remarks on chiral chemical potential

(1) 45 CAN NOT be considered as a true chemical potential

0 V8 =0, e= v,

GMA“ — 21@?5%q |

VPG
gg gg , 0123 = 11

U(1)4
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(2) It is well known that QCD with three colors suffers the sign problem:
namely, the fermion determinant of QCD with three colors is complex at
finite quark chemical potential, making the usual Monte Carlo sampling
of configurations in the lattice simulations not possible when the quark
chemical potential is larger than the temperature. However, the theory
with u. # 0is a sign free theory.

VSD(MS)VS — DT(MS)

the fermion determinant is real and positive at u. # 0, and grand
canonical ensembles with finite u. can be simulated on the lattice.

Arata Yamamoto, PRL 107, 031601 (2011)
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» Phase diagrams in NJL model at the chiral and
iIsospin chemical potential :

(I) in chiral limit
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Uy (GeV)
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ITI. Summary and Discussion

» Based on the Ginzburg-Landau approach, we have studied the
general phase structures of two-flavor system, and mapping with
the NJL model calculations at the chiral and isospin chemical

potentials.

Further studies:
» dense QCD Simulating in Ultracold atomic systems

High density QCD matter and ultracold atomic systems, although
differing by some twenty orders of magnitude in energy scales, share
analogous physical aspects:
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Kenji Maeda, Gordon Baym, and Tetsuo Hatsuda, PRL 103, 085301 (2009)

Cold atoms Dense QCD

b (bosonic atom) D (spin-0 diquark)
fy , (fermionic atom) ¢4 ; (unpaired quark)
N+, (b—f molecule) N4.1 (D—g bound state = nucleon)

b—f attraction gluonic D—¢ attraction
b—-BEC 2SC
N-BCS nucleon superfluidity

Meson condensation analogs in ultracold atomic and molecular
dipolar Jases, Kenji Maeda, Gordon Baym, and Tetsuo Hatsuda, arXiv:1205.1086v1
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» Hadron-quark phase transition in a unified model

In the framework of the NJL model, we are working on description the
hadron quark phase transition self-consistently by instead of RMF-
PNJL or RMF-MIT methods.
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» The coefficients at the critical point are
calculated in the NJL model as
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Comments

Case (1) and (2) can be solved analytically, but case (3) CAN
NOT. So we can only numerically show the most general
phase structures in all possibilities.

Although, the phase boundaries and the curves are parameter-
dependent, the topological structures should not be essentially
changed due to different choosing parameters.

For the massive quarks, we need to add the explicit symmetry
breaking term ho. (1) The effect of a finite external field, h,
generally smears the second order phase transition and
changes it to a smooth crossover. But, (2) The first order
phase transition is stable against a small external field (small
h). However, it will be washed out eventually for large h.
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