Status of low energy SUSY models confronted with the 125 GeV Higgs data

Junjie Cao

On behalf of my collaborators J. M. Yang, et al Based on our works arXiv: 1207.3698, 1206.3865, 1203.3694, 1202.5821, 1112.4391

junjiec@itp.ac.cn Henan Normal University, Xinxiang, China

HFCPV-2012 October 28, 2012

Conclusion:

- The MSSM can explain the LHC data quite well, but it suffers from severe fine tuning problem;
- The CMSSM is disfavored since it is hard to predict a 125 GeV Higgs boson, and at the same time cannot enhance the di-photon rate;
- The nearly Minimal Supersymmetric Standard Model (nMSSM) is excluded at 3*σ* level after considering available Higgs data;
- The most favored model is the Next to Minimal Supersymmetric Standard Model (NMSSM), whose predictions about the Higgs boson can naturally agree with the experimental data at 1σ level.

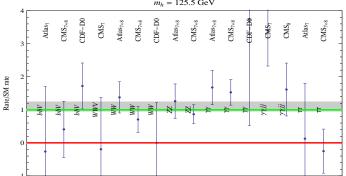
Catalogue

I Experimental progress in Higgs physics

II The Next to Minimal Supersymmetric Standard Model (NMSSM)

(日) (四) (王) (王) (王)

- General overview
- SM-like Higgs boson mass in the NMSSM
- ► How to compare SUSY with the LHC Higgs data


III SUSY vs experimental Higgs data

- Di-photon signal rate
- Four lepton signal rate
- Fine tuning extent Δ
- χ^2 for Golden samples
- Information about low χ^2 samples
 - ★ Various signal rates
 - ★ Representative points
 - ★ Dark matter direct detection

IV Summary

I. Experimental Progress in Higgs physics

• Announced discovery on July 4, 2012, by combining $5fb^{-1}$ 7-TeV data with $5fb^{-1}$ 8-TeV data.

 $m_h = 125.5 \text{ GeV}$

Properties:

- \bullet Mass: most precisely determined. Preferred region $125.5\pm0.54 {\rm GeV}.$
- Couplings:
 - ► large uncertainty, may be greatly improved with the whole 2012 data.
 - ► Largest deviation from γγ rate (Especially γγjj rate). Enhanced by a factor about 1.5.
 - Suppressed hgg coupling and enhanced $h\gamma\gamma$ coupling is currently favored.
- Spin:
 - Can not be determined in near future.
 - May be spin 0 and 2, can not be spin 1.
- CP: CP even state is favored, but there are discussions about CP-odd case.

Favored conclusions:

- The particle is at least partially responsible for EW breaking.
- The particle is at least partially responsible for mass generation.
- \bullet Agree with the SM predictions about the Higgs boson at 1σ level.

II. NMSSM: General overview

• NMSSM: singlet extension of the MSSM with Z₃ invariant superpotential. Superpotential: $W = W_{MSSM} + \lambda \varepsilon_{ij} \hat{H}_u^i \hat{H}_d^j \hat{S} + \frac{\kappa}{3} \hat{S}^3$. Soft breaking terms: $V_{\text{soft}} = V_{MSSM} + \tilde{m}_d^2 |H_d|^2 + \tilde{m}_u^2 |H_u|^2 + \tilde{m}_s^2 |S|^2 + (\lambda A_\lambda \varepsilon_{ij} H_u^i H_d^j S + \frac{\kappa}{2} A_\kappa S^3 + h.c.)$.

 W_{MSSM} : MSSM Superpotential without μ -term. \hat{S} : singlet superfield. V_{MSSM} : MSSM soft masses. $\varepsilon_{ij}\hat{H}^i_u\hat{H}^j_d\hat{S}$: doublet-singlet Higgs interaction.

- μ parameter is dynamically generated, $\mu = \lambda \langle s \rangle$.
- 3 CP-even Higgs bosons, 2 CP-odd Higgs bosons and 5 neutralinos. Rich Higgs physics and dark matter physics. May change squark decay signal.
- In the limit $\lambda, \kappa \to 0$, the singlet superfield decouples from the rest of ... If μ is fixed , phenomenology of NMSSM is same as that of MSSM. Only for large λ case can one expect large difference between the models.

II. NMSSM: SM-like Higgs boson mass

Define
$$H_{SM} = \sin \beta H_u + \varepsilon \cos \beta H_d^*$$
, $H_{NEW} = \cos \beta H_u - \varepsilon \sin \beta H_d^*$,

$$H_{SM} = \begin{pmatrix} G^+ \\ v + \frac{\phi_{sm} + iG^0}{\sqrt{2}} \end{pmatrix}, \quad H_{NEW} = \begin{pmatrix} H^+ \\ \frac{\phi_{new} + iP_1}{\sqrt{2}} \end{pmatrix}, \quad H_S = s + \frac{1}{\sqrt{2}} \left(\phi_s + iP_2 \right).$$

Elements of CP-even Higgs mass matrix in the basis $(\phi_{new}, \phi_{sm}, \phi_s)$:

$$\begin{split} \mathcal{M}_{11}^{2} &= M_{A}^{2} + (m_{Z}^{2} - \lambda^{2}v^{2})\sin^{2}2\beta, \\ \mathcal{M}_{12}^{2} &= -\frac{1}{2}(m_{Z}^{2} - \lambda^{2}v^{2})\sin 4\beta, \\ \mathcal{M}_{13}^{2} &= -(M_{A}^{2}\sin 2\beta + \frac{2\kappa\mu^{2}}{\lambda})\frac{\lambda v}{\mu}\cos 2\beta, \\ \mathcal{M}_{22}^{2} &= m_{Z}^{2}\cos^{2}2\beta + \lambda^{2}v^{2}\sin^{2}2\beta, \\ \mathcal{M}_{23}^{2} &= 2\lambda\mu v \left[1 - (\frac{M_{A}\sin 2\beta}{2\mu})^{2} - \frac{\kappa}{2\lambda}\sin 2\beta\right], \\ \mathcal{M}_{33}^{2} &= \frac{1}{4}\lambda^{2}v^{2}(\frac{M_{A}\sin 2\beta}{\mu})^{2} + \frac{\kappa\mu}{\lambda}(A_{\kappa} + \frac{4\kappa\mu}{\lambda}) - \frac{1}{2}\lambda\kappa v^{2}\sin 2\beta. \end{split}$$

4 ロ ト 4 部 ト 4 差 ト 4 差 ト 差 の Q (* 7/35) 7/35 Large M_A Limit: $\mathcal{M}_{11}^2 \gg \mathcal{M}_{22}^2 \gg \mathcal{M}_{12}^2$ and $(\mathcal{M}_{11}^2 - \mathcal{M}_{33}^2) \gg \mathcal{M}_{13}^2$. In this case, ϕ_{new} decouples from (ϕ_{sm}, ϕ_s) system.

$$\tilde{M}^2 = \begin{pmatrix} m_Z^2 \cos^2 2\beta + \lambda^2 \mathbf{v}^2 \sin^2 2\beta & 2\lambda\mu\nu \left[1 - \left(\frac{M_A \sin 2\beta}{2\mu}\right)^2 - \frac{\kappa}{2\lambda} \sin 2\beta \right] \\ 2\lambda\mu\nu \left[1 - \left(\frac{M_A \sin 2\beta}{2\mu}\right)^2 - \frac{\kappa}{2\lambda} \sin 2\beta \right] & \mathcal{M}_{33}^2 - \Delta^2 \end{pmatrix}$$

Two new features of the SM-like Higgs boson mass:

- Additional contribution $\lambda^2 v^2 \sin^2 2\beta$ at tree-level.
- Doublet-singlet mixing may push up or pull down the mass.

II. NMSSM: How to compare SUSY with data

• Select parameter points favored by low energy experiments and dark matter.

- ► Scan randomly over the SUSY parameter space.
- ► Calculate observables in low energy physics and dark matter physics.
- Exclude points with the help of experimental data.
- Optimize the scan region and repeat the scan.
- For each favored point, calculate χ^2 by available Higgs data.
- Investigate the properties of the SM-like Higgs boson for low χ^2 points.
- Perform similar study in the CMSSM, MSSM and nMSSM.

Scan region:

Assuming:

- $m_{\tilde{q}_{1,2}} = 2 \text{TeV}, \ m_{\tilde{g}} = 1 \text{TeV}, \ M_2 = 2 M_1.$
- All soft parameters in the slepton sector have a common value $m_{\tilde{l}}$.

$$\begin{split} & 0.5 < \lambda \leq 0.7, \ 0 < \kappa \leq 0.7, \ 90 \ \text{GeV} \leq \textit{M}_{\textit{A}} \leq 1 \ \text{TeV}, \ |\textit{A}_{\kappa}| \leq 1 \ \text{TeV}, \\ & 100 \ \text{GeV} \leq \textit{M}_{\textit{Q}_3}, \textit{M}_{\textit{U}_3}, \textit{M}_{\textit{D}_3} \leq 2 \ \text{TeV}, \ |\textit{A}_t|, |\textit{A}_b| \leq 5 \ \text{TeV}, \\ & 1 \leq \tan \beta \leq 60, \ 100 \ \text{GeV} \leq \mu, \textit{m}_{\tilde{l}} \leq 1 \ \text{TeV}, \ 50 \ \text{GeV} \leq \textit{M}_1 \leq 500 \ \text{GeV}. \end{split}$$

II. NMSSM: Strategy to compare SUSY with data

Constraints:

- LEP constraints:
 - ► Electroweak precision observables such as ρ_I , $\sin^2 \theta'_{eff}$, M_W , R_b . Agree with experimental fit values at 95% CL;
 - Lower bound on sparticle masses;
 - Constraints on electroweak -ino sector: $Z \to \chi_1^0 \chi^0$, $e^+e^- \to \chi_i^0 \chi_i^0, \chi_1^+ \chi_1^-$;
- B-physics constraints:
 - ► For $B \to X_s \gamma$, $B^0 \overline{B}^0$ mixing, $D^0 \overline{D}^0$ mixing, $K \overline{K}^0$ mixing and $B^- \to \tau \nu_{\tau}$, agree with experimental measurements at 2σ level;
 - ▶ 95% CL upper bound: $B^0_{s,d} \rightarrow \mu^+ \mu^-$, $B \rightarrow X_s \mu^+ \mu^-$;
- Higgs physics constraints:
 - Stability of vacuum state;
 - ▶ SM-like Higgs mass satisfies $123 \text{GeV} \le m_h \le 127 \text{GeV}$;
 - ► Constraints from the Tevatron and LHC search for Non-standard Higgs boson;
- Dark matter physics constraints:
 - Dark matter relic density agrees with WMAP fit value at 2σ level;
 - ▶ 90% CL upper bound on spin independent rate of χ -nucleon scattering;
- Require SUSY to explain muon g 2 anomaly at 2σ level.

III. SUSY vs data: Di-photon rate

• Curves:

central value (green) and 1σ region of the di-photon signal obtained by combing the ATLAS and CMS data with the method introduced in arXiv: 1203.4254 (by P. P. Giardino).

- 1σ best-fit mass: 125.5 \pm 0.54GeV. see arXiv: 1207.1374, by P. P. Giardino.
- Predictions of the MSSM and the NMSSM about the di-photon rate can agree with data at 1σ level.

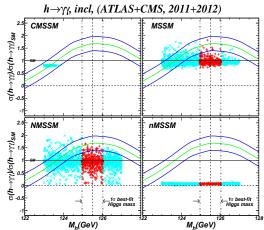
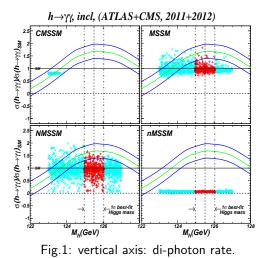
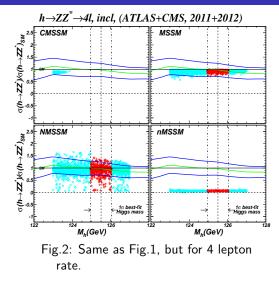



Fig.1: Surviving samples projected on the plane of the di-photon rate versus the SM-like Higgs mass. Only consider samples with $123 \text{GeV} \le m_h \le 127 \text{GeV}$.

III. SUSY vs data: Di-photon rate

• In CMSSM,

- ► $m_h \le 124 \text{GeV}$. Reason: Muon g - 2 and $B_s \to \mu^+ \mu^-$ forbid too large M_0 , $M_{1/2}$ and A_0 .
- Di-photon rate is reduced.
 Reason: The hbb coupling is slighted enhanced.
- In nMSSM, di-photon rate is severely suppressed.
 Reason: Dark matter is light (≤ 40GeV) and singlinolike, must annihilate via resonant CP-odd Higgs in early universe to get correct relic density.


As a result, $h \rightarrow \chi_1^0 \chi_1^0, A_1 A_1$ will be dominant decay modes.

III. SUSY vs data: 4 lepton rate

• Curves:

central value (green) and 1σ region of the 4 lepton signal obtained by combing the ATLAS and CMS data with the method introduced in arXiv: 1203.4254 (by P. P. Giardino).

- 1σ best-fit mass: 125.5 \pm 0.54GeV. see arXiv: 1207.1374, by P. P. Giardino.
- Except nMSSM, SUSY predictions about the 4 lepton signal can agree well with corresponding experimental data.

III. SUSY vs data: Fine tuning extent Δ

- Fine tuning extent Δ : $\Delta = Max\{|\frac{\partial \ln m_Z}{\partial \ln p_i^{GUT}}|\}.$
- +: Samples with m_h in the range $125.5 \pm 0.54 \text{GeV}$, hereafter called Golden Sample.
- In CMSSM, $\Delta \ge 200$.
- In MSSM,
 - $\Delta \gtrsim 10.$
 - $\label{eq:delta} \begin{tabular}{lll} \blacktriangleright & \Delta \geq 100 \mbox{ for samples with enhanced di-photon rate.} \end{tabular}$
- In NMSSM with large λ ,
 - Δ is usually less than 100.
 - ► ∆ may be as low as 4 for samples with enhanced di-photon rate.

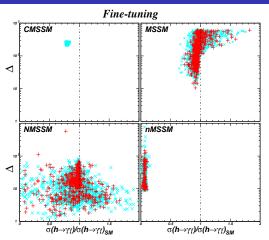


Fig.3 Same as Fig.1, but show Fine tuning extent for surviving samples as a function of the di-photon rate.

III. SUSY vs data: χ^2 for Golden Samples

• Golden Sample:

 $124.9 \text{GeV} \le m_h \le 126.1 \text{GeV}.$

• χ^2 : Computed with 16 sets of latest experimental data for $m_h = 125, 125.5, 126 \text{GeV}.$

For calculation method, see 1203.4254 by P. P. Giardino.

- SM: $\chi^2/d.o.f = 16.5/16$.
- In MSSM: $\chi^2/d.o.f$ may be as low as 9.0/16.
- In NMSSM with large λ ,

 - $\chi^2 > 30$ for some samples.
- In nMSSM, $\chi^2 > 60$. Excluded by Higgs data.

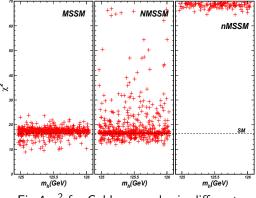


Fig.4 χ^2 for Golden samples in different models. 16 sets of latest experimental data were used.

III. SUSY vs data: Di-photon signal information

- Categorize Golden samples into:
 - $\chi^2 \leq 16.5$, better than SM.
 - ► 16.5 $< \chi^2 \le$ 26.3, Agree with data at 2σ .
 - $\chi^2 > 26.3$, excluded at 2σ .
- Enhanced di-photon rate is strongly preferred by Higgs data, which is realized by enhanced $Br(h \rightarrow \gamma \gamma)$.
- In MSSM, the enhancement of the Br is mainly by the increase of $h\gamma\gamma$ coupling (through light $\tilde{\tau}$ loop). Samples with low χ^2 , $\Delta > 100$.
- In NMSSM, the enhancement of the Br is by the suppression of *hbb* coupling (through the singlet component in *h*).

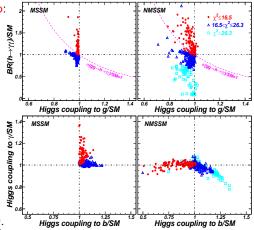
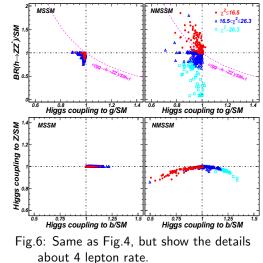
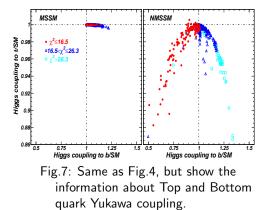
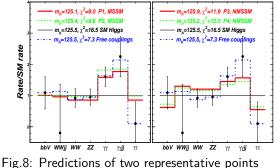



Fig.5 Detailed information about di-photon rate. Only Golden samples are considered.


III. SUSY vs data: Four lepton signal information

- Unlike the di-photon rate, an enhanced 4 lepton rate is not necessary to get a low χ².
- Although the hZZ coupling in the MSSM is same as that in the SM, the 4 lepton signal is never enhanced due to the reduction of Br(h → ZZ*) (through the enhancement of hbb coupling).
- In the NMSSM, the 4 lepton signal may be enhanced by the increase of $Br(h \rightarrow ZZ^*)$ (through the suppression of $hb\bar{b}$ coupling).

III. SUSY vs data: Coupling information


- In the MSSM,
 - Top quark Yukawa coupling is almost same as that in the SM.
 - Bottom quark Yukawa coupling is always enhanced.
- In the NMSSM with large λ ,
 - Top quark Yukawa coupling is usually reduced.
 - Bottom quark Yukawa coupling may be either reduced or enhanced.

III. SUSY vs data: Representative points information

	MSSM P1	MSSM P2	NMSSM P3	NMSSM P4]
$m_h(\text{GeV})$	125.1	125.4	125.9	125.2	
χ^2	9.0	9.6	11.9	12.0	
$\sigma(h o \gamma \gamma)/SM$	1.59	1.82	1.45	1.35	
$\sigma(h ightarrow ZZ^*)/SM$	0.86	0.98	1.21	1.16	
Δ (fine-tuning)	325.4	613.6	6.4	4.1	
aneta	59.9	37.1	4.7	4.0	
$m_{\tilde{t}_1}(\text{GeV})$	296.6	1470.3	405.6	262.5	
$m_{ ilde{ au}_1}({ m GeV})$	109.7	103.4	223.4	176.2	
$m_{{\widetilde \chi}_1^0}({ m GeV})$	57.8	49.7	79.1	78.1	
$\hat{\Omega}_{CDM}^{2}h^{2}$	0.112	0.104	0.104	0.109	
$Br(B_s ightarrow\mu^+\mu^-)/10^{-9}$	5.52	4.91	3.91	3.94	
$\delta a_{\mu}/10^{-9}$	3.71	2.31	0.81	0.79	
$\sigma(hV ightarrow bbV)/SM$	1.01	1.00	0.62	0.73	
$\sigma(hjj \rightarrow WW^*jj)/SM$	0.96	0.99	1.30	1.24	
$\sigma(h ightarrow WW^*)/SM$	0.86	0.98	1.21	1.16	
$\sigma(hjj ightarrow \gamma\gamma jj)/SM$	1.77	1.85	1.57	1.45	
$\sigma(h o au au)/SM$	0.86	0.99	< □ > 0.55> < ≡	<	¢
$\sigma^{SI}/10^{-46}$ (cm ²)	0.32	0.04	14 3	17 0 ^{19/3}	35

III. SUSY vs data: Representative points information

for the MSSM and the NMSSM respectively.

- Free coupling scenario: $\chi^2 = 7.3$. Varying freely all Higgs couplings, including $h\gamma\gamma$ and hgg coupling.
- For four benchmark points, their predictions about various signal rates agree with data at $1\sigma.$

III. SUSY vs data: Dark matter detection information

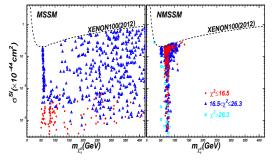


Fig.9: Spin-independent cross section of χ -nucleon scattering with $f_{Ts} = 0.020$.

- In MSSM, samples with $\chi^2 < 16.5$ predicts small cross section. Reason:
 - $\blacktriangleright~\mu>1{\rm TeV}$ so that the dark matter is highly bino-like.
 - Have considered constraints from $B_s \rightarrow \mu^+ \mu^-$. For large tan β , m_H very heavy.
- In NMSSM with large $\tan\beta,$ dark matter mass is limited:

 $60 \text{GeV} \leq m_{\tilde{\chi}_1^0} \leq 140 \text{GeV}.$

- The MSSM can explain the LHC data quite well, but it suffers from severe fine tuning problem;
- The CMSSM is disfavored since it is hard to predict a 125 GeV Higgs boson, and at the same time cannot enhance the di-photon rate;
- The nearly Minimal Supersymmetric Standard Model (nMSSM) is excluded at 3*σ* level after considering available Higgs data;
- The most favored model is the Next to Minimal Supersymmetric Standard Model (NMSSM), whose predictions about the Higgs boson can naturally agree with the experimental data at 1σ level.

- Global Fit of SUSY models using latest experimental data;
- Simulation of sparticle production at the LHC;
- Implication of new data on SUSY models;
- Perform similar study for other new physics models.

1. General overview Superpotential: $W = W_{MSSM} + \lambda \varepsilon_{ij} \hat{H}^i_u \hat{H}^j_d \hat{S} + \xi_F M_n^2 \hat{S}.$ Soft breaking terms: $V_{\text{soft}} = V_{MSSM} + \tilde{m}^2_d |H_d|^2 + \tilde{m}^2_d |H_u|^2 + \tilde{m}^2_S |S|^2 + (\lambda A_\lambda \varepsilon_{ij} H^i_u H^j_d S + \text{h.c.}) + (\xi_S M^3_n S + \text{h.c.}).$

 W_{MSSM} : MSSM superpotential without μ -term. \hat{S} : gauge singlet superfield. V_{MSSM} : gaugino and sfermion soft masse. $\xi_F M_n^2 \hat{S}, \xi_S M_n^3 S$: Tadpole terms.

- 5 CP-even Higgs bosons, 2 CP-odd Higgs bosons and 5 neutralinos.
- In N=1 supergravity model with a Z₅ symmetry, the tadpole terms arise by supergravity effects at the six loop level.
 M_n is naturally at EW scale, not destabilize the gauge hierarchy!
 The tadpole terms can avoid the domain wall problem.
- The parameter μ is dynamically generated, $\mu = \lambda \langle s \rangle$.
- In the limit $\xi_S, \xi_F \rightarrow 0$, a Peccei-Quinn symmetry exists so that $m_{A_1} \rightarrow 0$.
- nMSSM is similar to NMSSM with no cubic self interaction of singlet field. Differences: the tree-level mass matrices and the minimization conditions.

2. Higgs sector:

 λ , v_u , v_d , μ , \tilde{m}_S , A_λ and $m_A^2 = 2(\mu A_\lambda + \lambda \xi_F M_n^2) / \sin 2\beta$ as input parameters. Basis [Re(H_u^0), Re(H_d^0), Re(S)], CP-even Higgs boson mass matrix:

$$\begin{pmatrix} m_A^2 \cos^2 \beta + m_Z^2 \sin^2 \beta & (2\lambda^2 v^2 - m_Z^2 - m_A^2) \sin \beta \cos \beta & \lambda v \cos \beta (2\mu \tan \beta - A_\lambda) \\ m_A^2 \sin^2 \beta + m_Z^2 \cos^2 \beta & \lambda v \cos \beta (2\mu - A_\lambda \tan \beta) \\ m_S^2 + \lambda^2 v^2 \end{pmatrix}$$

Basis
$$[\tilde{A} = \cos\beta \operatorname{Im}(H_u^0) + \sin\beta \operatorname{Im}(H_d^0), \operatorname{Im}(S)]$$
: $\mathcal{M}_{\mathcal{P}}^2 = \begin{pmatrix} m_A^2 & \lambda A_\lambda v \\ m_S^2 + \lambda^2 v^2 \end{pmatrix}$.

Two solutions to the Little Hierarchy Problem suffered by the MSSM:

- Consider $\tan \beta \to 1$ and $A_{\lambda} \to 2\mu$, $m_h^2 = (m_A^2 + m_Z^2) \cos^2 2\beta + \lambda^2 v^2 \sin^2 2\beta$.
- Choose the Peccei-Quinn symmetry limit. A_1 is light, $h \rightarrow A_1A_1$ is the dominant decay. The LEP mass bound on h is not valid!

3. Neutralino sector: Define $\tilde{v}_{1,2} = \frac{1}{2}(v_2 \pm v_1)$.

Basis: $\psi^0 = \{-i\lambda', -i\lambda^3, \frac{1}{\sqrt{2}}(\psi^0_u - \psi^0_d), \frac{1}{\sqrt{2}}(\psi^0_u + \psi^0_d), \psi^0_s\}$

$$\mathcal{M}_{\tilde{\chi}} = \begin{pmatrix} M_1 & 0 & g' \tilde{v}_1 & g' \tilde{v}_2 & 0 \\ & M_2 & -g \tilde{v}_1 & -g \tilde{v}_2 & 0 \\ & \mu & 0 & \sqrt{2} \lambda \tilde{v}_2 \\ & & -\mu & -\sqrt{2} \lambda \tilde{v}_1 \\ & & & 0 \end{pmatrix}.$$

 $\tilde{\chi}_1^0$ is singlino-dominated with mass given by $m_{\tilde{\chi}_1^0} \simeq \frac{2\lambda^2 \mu v^2}{(\mu^2 + \lambda^2 v^2)(\tan \beta + \cot \beta)}$. Three characters of $m_{\tilde{\chi}_1^0}$:

- The larger λ is, the heavier $\tilde{\chi}_1^0$ will be.
- The large $\tan\beta$ is, the lighter $\tilde{\chi}_1^0$ will be.
- The large μ is, the lighter $\tilde{\chi}_1^0$ will be.

Since a light, singlino-like neutralino is difficult to annihilate, dark matter relic density can impose constraints on λ , tan β , μ and also $m_{\tilde{\chi}_{1}^{0}}$.

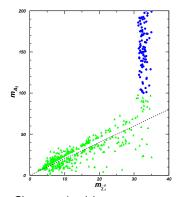


Fig.11: Scatter plot of the parameter space allowed by current experiments including constraints from a_{μ} with $m_{\tilde{\mu}} = 100 GeV$, projected in $m_{\tilde{\chi}_1^0} - m_{A_1}$ (in GeV) plane.

 Characterized by m_{A1} ≥ m_Z. In this case, *˜*⁰₁ mainly annihilates through exchanging a Z-boson.
 ∴ Characterized by m_{A1} < m_Z and m_{A1} ≃ 2m_{˜X⁰}. Most samples.

In this case, $\tilde{\chi}_1^0$ mainly annihilates through exchanging a light A_1 .

SM-like Higgs boson h

- Mass varies from 70 GeV to 145 GeV.
- Dominant decay may be any of the following:
 - $h \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_1^0$;
 - $h \rightarrow \tilde{\chi}_1^0 \tilde{\chi}_2^0$;
 - $h \rightarrow A_1 A_1;$
 - $\blacktriangleright h \to h_1 h_1.$
- $Br(h \rightarrow b\bar{b})$ is always suppressed. For $m_h \sim 125 \text{GeV}$, $Br(h \rightarrow b\bar{b}) \lesssim 10\%$.

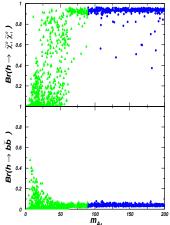
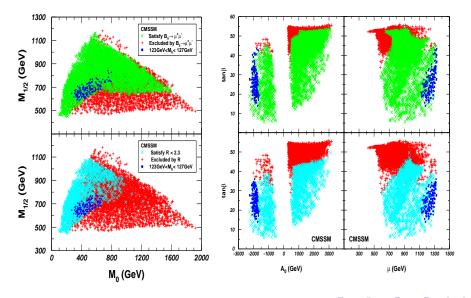
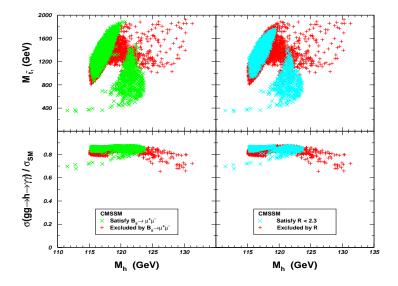
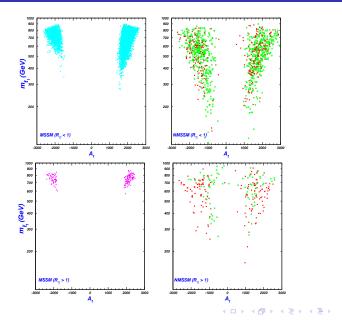




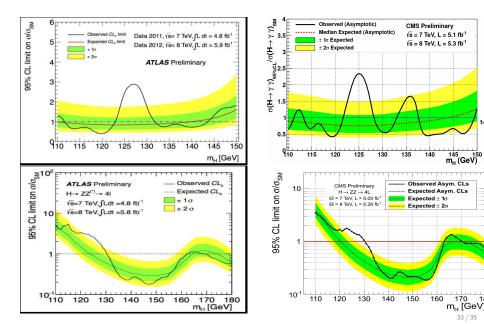
Fig.11: Decay rates of the SM-like Higgs boson as a function of the lightest CP-odd Higgs boson mass.



▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ ■ めへの

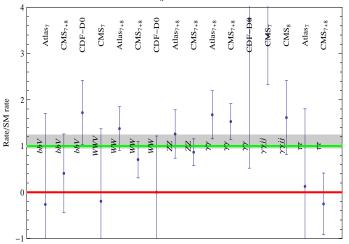
29 / 35

Addendum: Stop sector in MSSM and NMSSM


31/35

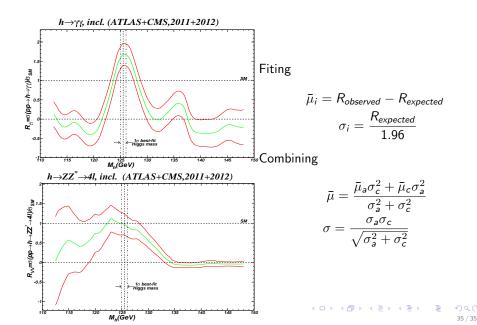
Addendum: Stop sector in MSSM and NMSSM

Relative light Stop can not be exclude by current LHC data. Consider Semi-leptonic Analysis:


- $pp \rightarrow \tilde{t}_1 \tilde{t}_1^* \rightarrow (t\chi_1^0)(\bar{t}\chi_1^0) \rightarrow (b\ell^+ \nu \tilde{\chi}_1^0)(\bar{b}jj\tilde{\chi}_1^0) \text{ or } (bjj\tilde{\chi}_1^0)(\bar{b}\ell^- \bar{\nu}\tilde{\chi}_1^0)$ This channel can not impose $\widetilde{t_i}\widetilde{t_i}$ production, $\widetilde{t_i} \rightarrow t \widetilde{\chi}$ 10^{3} $\tau^{\text{NLO}+\text{NLL}}\left(pp \rightarrow \tilde{t_1}\tilde{\tilde{t_1}} + X\right)$ [pb] any constraints after taking 10^{2} into account $\tilde{t}_1 \rightarrow t \chi_1^0$ decay 10^{1} branching ratio: 100 $Br(\tilde{t}_1 \rightarrow t\chi_1^0) \lesssim 50\%$. 10^{-1} For $\sigma(\tilde{t}_1\tilde{t}_1^*)$ at NLO, see 10^{-2} W. Beenakker, 1006.4771. 10^{-3} For ATLAS recent search $\overline{S} = 7 \text{ TeV}$ result. see arXiv: 1208.2590. 400 500 600 700 800 900 100 m_~ [GeV] m_{f_1} [GeV]
- $pp \rightarrow \tilde{t}_1 \tilde{t}_1^* \rightarrow (b\chi_1^+)(\bar{b}\chi_1^-) \rightarrow (b\ell^+ \nu \tilde{\chi}_1^0)(\bar{b}jj \tilde{\chi}_1^0) \text{ or } (bjj \tilde{\chi}_1^0)(\bar{b}\ell^- \bar{\nu} \tilde{\chi}_1^0).$ The decay of χ_1^+ is rather complicated: $\chi_1^+ \rightarrow \chi_1^0 W, \tilde{\tau}^+ \nu_{\tau}, \tilde{\nu}_{\tau} \tau^+.$ $S/\sqrt{B} < 3$ when $m_{\tilde{\chi}_1^+} = 250 \text{GeV}$ for 5 fb^{-1} luminosity at 8TeV LHC. See our work, arXiv: 1206.3865.

Addendum: Part of LHC data

Addendum: Part of LHC data


 $m_h = 125.5 \text{ GeV}$

E √ Q (~ 34 / 35

イロン 不同と 不同と 不同と

Addendum: Data Treatment (See 1203.4254)

