
Scalar strangeness content of the nucleon 
and baryon sigma terms 

Lisheng Geng
School of Physics and Nuclear Energy Engineering, 

Beihang University, Beijing 100191, China

January 11th, 2014@UCAS

Collaborators: 
• Xiu-Lei Ren, Beihang U. 
• Jie Meng, Peking U. 
• Jorge Martin-Camalich, UC San Diego 
• Hiroshi Toki, Osaka U.

arXiv:1404.4799



Contents

✤Motivation: Baryon Sigma Terms, Dark Matter Direct 
Detection, and quark-flavor structure of the nucleon 

✤Lattice QCD  and Chiral Perturbation Theory (ChPT) 
✓ A very brief introduction to lattice QCD 

✓ ChPT in the one-baryon sector — the power counting breaking problem and its 
recovery 

✤Octet baryon sigma terms from application of Feynman-

Hellmann theorem, LQCD simulations, and Chiral 

perturbation theory 

✤Summary



Motivation

3



Energy-matter composition of the universe



What is dark matter?
• What we know! 

– Dark (electric neutral) 
– (Probably) Massive (cold/non-relativistic) 
– Still abound today (stable or with a lifetime of the age of 

the universe) 
• What we do not know! 

– Mass, spin,… 
– Couplings: gravity, weak Interactions, Higgs, quarks/

gluons, leptons? 
• Questions can only be answered ultimately by 

experiments, but theories are needed to 
formulate the questions 



No lack of theories
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Some selected candidates

• Axions, and axion-like particles 
• Sterile Neutrinos 
• Weakly Interacting Massive Particles (WIMPS) 

– WIMPs naturally can account for the amount of 
dark matter we observe in the Universe 

– WIMPs automatically occur in many models of 
physics beyond the Standard Model



Particle searches for WIMPs
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Spin-independent neutrilino-nucleon scatteringDark Matter Lattice QCD Sigma terms 2010 dataset
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Strong dependence on the strangeness sigma term

from the !!N and "0 parameters. As shown for benchmark
model C in Table III, each of these two parameters induces
uncertainties of!30% or more in "#p;SI at the 68.3% C.L.;
"#n;SI (not shown) has similar induced uncertainties. The
large confidence intervals for the SI cross sections in
Table II are almost entirely due to the uncertainties in these
two parameters.

We focus the discussion here mainly on !!N rather than
"0 as the !!N " 64# 8 MeV result is significantly larger
than previous estimates for that parameter. Indeed the
range of estimates of the central value for !!N is far
greater than the typically quoted uncertainty. In view of
this, we also include below some results for lower values of
!!N.

In Fig. 2, we show the !!N dependence of "#N;SI for the
benchmark models, and Table IV gives the "#N;SI values
for those models for selected values of !!N . All the other
parameters are set at their fiducial values (Table I). From
the minimal value for !!N ("0 " 36 MeV) to the 2-"
upper bound (80 MeV), "#N;SI varies by more than a factor
of 10 (as much as a factor of 35 for model L). At these
benchmarks and in other models of interest, for larger
values of !!N$!!N 6! "0%, the majority of the contribution
to fp in Eq. (10) comes from the strange-quark term, with
f$p%Ts / y / !!N & "0, so that "#p;SI ! $!!N & "0%2. Thus,
the SI cross sections are particularly sensitive not just to
!!N and "0, but to their difference. For smaller values of
!!N (!!N ! "0), the strange contribution no longer domi-
nates, but a strong dependence of "#N;SI on !!N does
remain.

In Fig. 3, the SI cross sections are shown along the
WMAP-allowed coannihilation strip for tan$ " 10 and
coannihilation/funnel strip for tan$ " 50 for the !!N

reference values of 36 MeV (no strange scalar contribu-
tion), 64 MeV (central value), and 80 MeV (2-" upper
bound); CDMS and XENON10 limits are also given. As
with the benchmark models, a factor of !10 variation
occurs in "#N;SI over these !!N reference values for any
given model along the WMAP strip.

Such large variations present difficulties in using any
upper limit or possible future precision measurement of
"#N;SI from a direct detection signal to constrain the
CMSSM parameters. The present CDMS and XENON10
upper limits have (almost) no impact on the WMAP strip
for tan$ " 10$50%, if one makes the very conservative
assumption that "0 " 36 MeV (y " 0). On the other
hand, m1=2 ! 200 GeV would be excluded for tan$ " 10
if !!N " 64 or 80 MeV. This excluded region would
extend to m1=2 ! 300 GeV for tan$ " 50 if !!N " 64
or 80 MeV. Thus, the experimental uncertainty in !!N is
already impinging on the ability of the present CDMS and
XENON10 results to constrain the CMSSM parameter
space.

Looking to the future, a conjectural future measurement
of "#p;SI " 4' 10&9 pb would only constrain m1=2 to the
range 600 GeV<m1=2 < 925 GeV if tan$ " 10 and
1100 GeV<m1=2 < 1400 GeV if tan$ " 50, for the 1-"
!!N range of 64# 8 MeV. If smaller values of !!N are

FIG. 2 (color online). The spin-independent neutralino-
nucleon scattering cross section as a function of !!N for bench-
mark models C, L, and M. Note that "#p;SI and "#n;SI are nearly
indistinguishable at the scale used in this plot.

TABLE IV. Spin-independent neutralino-nucleon scattering
cross sections in the benchmark models for several values of
!!N .

Model C L M

!!N " 36 MeV:
"#p;SI (pb) 3:40' 10&10 1:38' 10&9 1:78' 10&11

"#n;SI (pb) 3:67' 10&10 1:61' 10&9 1:89' 10&11

"#n;SI="#p;SI 1.080 1.170 1.065
!!N " 45 MeV:
"#p;SI (pb) 8:80' 10&10 5:55' 10&9 4:23' 10&11

"#n;SI (pb) 9:24' 10&10 6:02' 10&9 4:41' 10&11

"#n;SI="#p;SI 1.050 1.085 1.043
!!N " 56 MeV:
"#p;SI (pb) 1:88' 10&9 1:45' 10&8 8:64' 10&11

"#n;SI (pb) 1:95' 10&9 1:52' 10&8 8:91' 10&11

"#n;SI="#p;SI 1.035 1.053 1.031
!!N " 64 MeV:
"#p;SI (pb) 2:85' 10&9 2:36' 10&8 1:28' 10&10

"#n;SI (pb) 2:93' 10&9 2:46' 10&8 1:32' 10&10

"#n;SI="#p;SI 1.029 1.042 1.026
!!N " 72 MeV:
"#p;SI (pb) 4:01' 10&9 3:49' 10&8 1:78' 10&10

"#n;SI (pb) 4:11' 10&9 3:61' 10&8 1:82' 10&10

"#n;SI="#p;SI 1.025 1.035 1.022
!!N " 84 MeV:
"#p;SI (pb) 6:13' 10&9 5:61' 10&8 2:69' 10&10

"#n;SI (pb) 6:26' 10&9 5:76' 10&8 2:74' 10&10

"#n;SI="#p;SI 1.021 1.028 1.019
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Determination of the sigma terms

• Experimentally, the pion sigma term can be 
inferred from pion-nucleon scattering data at 
Cheng-Dashen point  

• Because of lack of kaon-nucleon scattering data, 
the strangeness-sigma term cannot be obtained 
this way 
–  Lattice QCD might be our hope to predict  it from first 

principles

�⇡N = 45± 8MeV



LQCD determination of sigma terms
• Direct method—calculates the 3-point connected and 

disconnect diagrams 

• Spectrum method-calculates the baryon masses, and 
relates the sigma terms to their quark mass dependence 
via the Feynman Hellman theorem

– JLQCD	  coll.,	  PRD83,114506	  (2011)	  
– R.	  Babich	  et	  al.,	  PRD85,054510	  (2012)	  
– QCDSF	  coll.,	  PRD85,	  054502	  (2012)	  
– ETM	  coll.,	  JHEP	  1208,037(2012)	  
– M.	  Engelhardt	  et	  al.,	  PRD86,	  114510	  (2012)	  
– JLQCD	  coll.,	  PRD87,	  034509	  (2013)	  	  

– JLQCD	  coll.,	  PRD83,114506	  (2011)	  
– R.	  Babich	  et	  al.,	  PRD85,054510	  (2012)	  
– QCDSF	  coll.,	  PRD85,	  054502	  (2012)	  
– ETM	  coll.,	  JHEP	  1208,037(2012)	  
– M.	  Engelhardt	  et	  al.,	  PRD86,	  114510	  (2012)	  
– JLQCD	  coll.,	  PRD87,	  034509	  (2013)	  	  

5 Pion- and strangeness baryon sigma terms

In this section, we evaluate the pion- and strangeness sigma terms for all octet baryons at

physical point using the mass formulas up to NNLO.

The light-quark sigma terms are important quantities in explaining the chiral symmetry

breaking e↵ects in QCD. In particular, for nucleon-sigma term if of vital importance to

understand the composition of nucleon mass and strangeness content of nucleon. The

accurate knowledge of the sigma terms is of essential importance in the interpretation of

the cross section for the detection of dark matter [52]. However, these quantities cannot

be directly measured by experiment, ChPT, with its LECs fixed by the LQCD data, can

make predictions for sigma terms [53–55].

The sigma terms are defined by scalar form factors of baryon at zero recoil. In this

work, we calculate all the baryon octet sigma terms �⇡B, �sB for B = N, ⇤, ⌃, ⌅ , and

through the Feynman-Hellmann theorem, which states:

�⇡B = mlhB(p)|ūu+ d̄d|B(p)i = ml
@MB

@ml
(5.1)

�sB = mshB(p)|s̄s|B(p)i = ms
@MB

@ms
. (5.2)

where ml = (mu +md)/2.

Other interesting quantities, like the strangeness content (yB) and the so-called ”di-

mensionless sigma terms” (flB, fsB) are also calculated

yB =
2hB(p)|s̄s|B(p)i

hB(p)|ūu+ d̄d|B(p)i =
ml

ms

2�sB
�⇡B

(5.3)

flB =
mlhB(p)|ūu+ d̄d|B(p)i

MB
=

�⇡B
MB

(5.4)

fsB =
mshB(p)|s̄s|B(p)i

MB
=

�sB
MB

. (5.5)

Using the previous Fit-I parameters and combining with the Eq. (5.1) and (5.3), we

obtain the results (Table 8) of the pion- and strangeness sigma terms �⇡B, �sB for all the

baryon octet members, and the corresponding strangeness content yB, ”dimensionless sigma

terms” flB, fsB. For the nucleon pion-sigma term at physical point, �⇡N = 42(2)(12), is in

reasonable agreement with the empirical determination coming from ⇡�N scattering data

Table 8. The sigma-terms, the strangeness content and the ”dimensionless sigma terms” for all
octet baryons at physical point. The first error is statistical, the second one systematic.

�⇡B [MeV] �sB [MeV] yB flB fsB
N 43(2)(12) 128(22)(55) 0.248(44)(127) 0.0457(21)(128) 0.136(23)(59)

⇤ 19(2)(15) 269(21)(66) 1.178(154)(974) 0.0170(18)(134) 0.241(19)(59)

⌃ 18(2)(13) 295(21)(50) 1.364(180)(1012) 0.0151(17)(109) 0.247(18)(42)

⌅ 4(1)(7) 395(20)(55) 8.221(2097)(144432) 0.00303(76)(531) 0.300(15)(42)

– 15 –



Why ChPT?

• By themselves, both methods suffer from a number 
of drawbacks in addition to the inherent artifacts of 
LQCD simulations, e.g., 
- Method 1 still too time consuming, noise/signal 

ratio, etc. 
- Method 2 requires calculations at quark masses 

both larger and smaller than their physical 
counterparts 

• ChPT can help not only in alleviating some of 
the drawbacks but also removing the LQCD 
artifacts



Our aim

• To apply the Feynman-Hellmann theorem to predict 
the baryon sigma terms using the covariant (EOMS) 
baryon chiral perturbation theory 

• To fix the unknown low-energy constants of BChPT, 
we rely on the lQCD simulations of baryon masses
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Quark-flavor structure of octet baryons 

Naive quark model



Quark-flavor structure of the proton

• Naive quark model—minimal quark contents

• In reality, 

|pi = |uudi

|pi = |uudi(1 + |uūi+ |dd̄i+ |ss̄i)
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Strangeness content of the proton
• to the spin 

– deep-inelastic lepton scattering  

• to the electromagnetic form factors 
- parity-violating electron-proton scattering 

• to the mass 
– scalar strangeness content, cannot be measured 

directly
hN |ss̄|Ni



Strangeness content of the proton
• to the spin 

– deep-inelastic lepton scattering  

• to the electromagnetic form factors 
- parity-violating electron-proton scattering 

• to the mass 
– scalar strangeness content, cannot be measured 

directly

How to obtain the scalar strangeness content of the nucleon
from the LQCD masses using Chiral Perturbation Theory

hN |ss̄|Ni



Global fit of the strangeness vector and 
axial vector form factors of the nucleon

• The electric and magnetic 
form factors are consistent 
with zero, but not the axial-
vector form factor

International Nuclear Physics Conference 2013
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Figure 1. Results of the determination of Gs
E , Gs

M , and Gs
A at individual values of Q2, and also from our global

fit. The separate determinations were done by Liu et al. [15] (green squares at 0.1 GeV2), Androić et al. [9] (blue
inverted triangles), Baunack et al. [12] (red squares at 0.23 GeV2), Ahmed et al. [7] (red triangles at 0.62 GeV2),
and Pate et al. [16] (open and closed circles). The preliminary results of our global fit (see text) are shown by the
solid line; the 70% confidence level limit curves for the fit are shown as the dashed line in the right-hand panel.
The vertical scale for Gs

A in the right-hand panel has been adjusted to accommodate the limit curves of the fit.

Strong limits are placed on the contribution of the strange quarks to the vector form factors throughout
this Q2 range. On the other hand, �S is also consistent with 0 but the uncertainty is very large because
there are no ⌫p or ⌫̄p elastic data at su�ciently low Q2 to constrain it. As a result the uncertainties
in the global fit to Gs

A are very much larger than the uncertainties in the separate determinations of
Gs

A in Figure 1. We cannot determine �S in this method until additional neutrino scattering data are
obtained at low Q2.

Table 1. Preliminary results for our 5-parameter fit to the 48 elastic neutrino- and PV electron-scattering data
points from BNL E734, HAPPEx, SAMPLE, G0, and PVA4.

Parameter Fit value
⇢s �0.071 ± 0.096
µs 0.053 ± 0.029
�S �0.30 ± 0.42
⇤A 1.1 ± 1.1
S A 0.36 ± 0.50
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Strong limits are placed on the contribution of the strange quarks to the vector form factors throughout
this Q2 range. On the other hand, �S is also consistent with 0 but the uncertainty is very large because
there are no ⌫p or ⌫̄p elastic data at su�ciently low Q2 to constrain it. As a result the uncertainties
in the global fit to Gs

A are very much larger than the uncertainties in the separate determinations of
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A in Figure 1. We cannot determine �S in this method until additional neutrino scattering data are
obtained at low Q2.
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A few words on LQCD and BChPT, and 
why BChPT is needed

19



QCD—non-perturbative at low energies
✤  Quantum ChromoDynamics—the theory of the strong interaction

Asymptotic freedom— 
Nobel prize in physics 2004

Low energy: non-perturbative 
                      problematic

High energy: perturbative QCD 
                       successful

✓ Phenomenological models 
✓ Effective field theories 
✓ LQCD



Brute Force: Lattice QCD  

1

2

1 2 3

∆E(t)

t

! !
!

!
! !

Figure 8: Monte Carlo values ∆E(t) ≡ log(G(t)/G(t+a))/a plotted versus t for an harmonic
oscillator, as in Fig. 4 but with Ncor = 1. The errorbars are unreliable.

3 Field Theory on a Lattice

3.1 From Quantum Mechanics to Field Theory

Field theories of the sort we are interested in have lagrangian formulations
and so can be quantized immediately using path integrals. The procedure is
precisely analogous to what we do in the previous section when quantizing
the harmonic oscillator. The analogues of the coordinates x(t) in quantum
mechanics are just the fields φ(x) or Aµ(x) where x = (t, x⃗) is a space-time
point. Indeed our quantum mechanical examples can be thought of as field
theory examples in 0 spatial and 1 temporal dimension: x(t) → φ(t) → φ(x).
The analogue of the ground state in quantum field theory is the vacuum state,
|0⟩, while the analogues of the excited states, created when φ(x) or φ3 or . . . acts
on |0⟩, correspond to states with one or more particles create in the vacuum.

In the lattice approximation both space and time are discrete:

! ! ! !

! ! ! !

! ! ! !

! ! ! !

✻

❄

L

✲✛
a

✲site

✲link

15Basic idea：discretize space-time and solve non-perturbative  
strong interaction physics in a finite hypercube, utilizing monte 
carlo sampling techniques



• Vacuum 

• Observable

Calculating path-integral in Euclidean 
space-time



Parameters and simulation costs

• light quark masses: mu/md 

• lattice spacing:  a 

• lattice volume：V=L4
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• To reduce cost: employ larger than physical light 
quark masses, finite lattice spacing and volume.  

• To obtain physical quantities, multiple extrapolations 
are needed



Multiple extrapolations

• Chiral extrapolations: light quark masses to their 
physical values 

• Finite volume corrections: infinite space-time 

• Continuum extrapolations: zero lattice spacing

Multiple extrapolations

• Chiral extrapolations: light quark masses 
to the physical world

• Finite volume corrections: infinite space-
time

• Continuum extrapolations: zero lattice 
spacing
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Why Chiral  Perturbation Theory needed?

• All can be performed with the help of Chiral 
Perturbation Theory 

• The low-energy effective field theory of QCD 

– provides a bridge to link LQCD simulations to the 
physical world 

– helps/guides to perform the aforementioned 
extrapolations



Interplay between ChPT and LQCD 
Simulations

•As the low-energy EFT of QCD, ChPT provides a 
model-independent description of low-energy strong 
interaction phenomena by itself 

•At higher orders, which are needed to achieve 
accuracy at the few percent level, there might be too 
many unknown low-energy constants (LECs), which 
can not easily be determined by experimental data 
alone  

• LQCD simulations provide a solution to overcome 
the above difficulty



l ChPT exploits the symmetry of the QCD Lagrangian and its ground state; in 
practice, one solves in a perturbative manner the constraints imposed by chiral 
symmetry and unitarity by expanding the Green functions in powers of the 
external momenta and of the quark masses. (J. Gasser, 2003)

Chiral Perturbation Theory (ChPT) in essence

• Maps quark (u, d, s) dof’s to those of the asymptotic states, hadrons



• ChPT  very successful in the study of Nanbu-Goldstone boson self-
interactions. (at least in SU(2)) 

• In the one-baryon sector, things become problematic because of the 
nonzero (large) baryon mass in the chiral limit,  which leads to the fact 
that high-order loops contribute to lower-order results, i.e., a systematic 
power counting is lost!

Power-counting-breaking (PCB) in the one-baryon sector

Chiral order =

red dots denote 
possible  
PCB terms (pion-
nucleon scattering) 

J. Gasser et al., 
NPB 307, 779(1988)



Power-counting-restoration methods



Power-counting-restoration methods



Extended-on-Mass-Shell (EOMS)

tree = M0 + bm2
⇡

• “Drop” the PCB terms

+
⇓
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Extended-on-Mass-Shell (EOMS)

tree = M0 + bm2
⇡

• “Drop” the PCB terms

+
⇓

• Equivalent to redefinition of the LECs

tree = M0 + bm2
⇡ +
⇓ChPT contains all possible terms allowed by symmetries, therefore 

whatever analytical terms come out from a loop amplitude, they must 
have a corresponding LEC



HB vs. Infrared vs. EOMS

• Heavy baryon (HB) ChPT 
- non-relativistic 
- breaks analyticity of loop amplitudes 
- converges slowly (particularly in three-flavor sector) 
- strict PC and simple nonanalytical results 

• Infrared BChPT 
- breaks analyticity of loop amplitudes  
- converges slowly (particularly in three-flavor sector) 
- analytical terms the same as HBChPT 

• Extended-on-mass-shell (EOMS) BChPT 
- satisfies all symmetry and analyticity constraints 
- converges relatively faster--an appealing feature



The nucleon scalar form factor at q3

EOMS(IR)

HB

t=4 mП
2

S. Scherer, Prog.Part.Nucl.Phys.64:1-60,2010

Figure 17: Contributions to the nucleon self energy at O(q4). The number n in the interaction blobs

refers to L(n)
πN . The Lagrangian L(2)

πN does not produce a contribution to the πNN vertex.

5.1 Nucleon mass and sigma term at O(q4)

A full one-loop calculation of the nucleon mass also includes O(q4) terms (see Fig. 17). The quark-mass
expansion up to and including O(q4) is given by

mN = m + k1M
2 + k2M

3 + k3M
4 ln

(
M

m

)
+ k4M

4 + O(M5), (244)

where the coefficients ki in the EOMS scheme read [Fuchs et al., 2003a]

k1 = −4c1, k2 = − 3gA
2

32πF 2
, k3 = − 3

32π2F 2m

(
g

2
A − 8c1m + c2m + 4c3m

)
,

k4 =
3gA

2

32π2F 2m
(1 + 4c1m) +

3

128π2F 2
c2 − ê1. (245)

Here, ê1 = 16e38 + 2e115 + 2e116 is a linear combination of O(q4) coefficients [Fettes et al., 2000]. A
comparison with the results using the infrared regularization [Becher and Leutwyler, 1999] shows that
the lowest-order correction (k1 term) and those terms which are non-analytic in the quark mass m̂ (k2

and k3 terms) coincide. On the other hand, the analytic k4 term (∼ M4) is different. This is not
surprising; although both renormalization schemes satisfy the power counting specified in Sec. 4.2.2,
the use of different renormalization conditions is compensated by different values of the renormalized
parameters.

For an estimate of the various contributions of Eq. (244) to the nucleon mass, we make use of the
parameter set

c1 = −0.9 m−1
N , c2 = 2.5 m−1

N , c3 = −4.2 m−1
N , c4 = 2.3 m−1

N , (246)

which was obtained in Ref. [Becher and Leutwyler, 2001] from a (tree-level) fit to the πN scattering
threshold parameters. Using the numerical values

gA = 1.267, Fπ = 92.4 MeV, mN = mp = 938.3 MeV, Mπ = Mπ+ = 139.6 MeV, (247)

one obtains for the mass of nucleon in the chiral limit (at fixed ms ̸= 0):

m = mN −∆m = [938.3 − 74.8 + 15.3 + 4.7 + 1.6 − 2.3 ± 4] MeV = (883 ± 4) MeV (248)

with ∆m = (55.5±4) MeV. Here, we have made use of an estimate for ê1M4 = (2.3±4) MeV obtained
from the σ term. (Note that errors due to higher-order corrections are not taken into account.) In
terms of the SU(2)L×SU(2)R-chiral-symmetry-breaking mass term of the QCD Hamiltonian,

Hsb = m̂(ūu + d̄d), (249)

the pion-nucleon σ term is defined as the proton matrix element

σ =
1

2mp
⟨p(p, s)|Hsb(0)|p(p, s)⟩ (250)
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Figure 18: Pion mass dependence of the term k5M5 ln(M/mN) (solid line) for M < 400 MeV. For
comparison also the term k2M3 (dashed line) is shown.

shows the pion mass dependence of the term k5M5 ln(M/mN ) (solid line) in comparison with the
term k2M3 (dashed line) for pion masses below 400 MeV which is considered a region where chiral
extrapolations are valid (see, e.g., Refs. [Meißner, 2006], [Djukanovic et al., 2006]). We see that already
at M ≈ 360 MeV the term k5M5 ln(M/mN ) becomes as large as the leading non-analytic term at one-
loop order, k2M3, indicating the importance of the fifth-order terms at unphysical pion masses. Our
results for the renormalization-scheme-independent terms agree with the heavy-baryon ChPT results of
Ref. [McGovern and Birse, 1999].

5.3 Form factors of the nucleon

5.3.1 Scalar form factor

The pion-nucleon σ term corresponds to the kinematical point t = 0 of the scalar form factor which is
defined as

⟨p(p′, s′)|Hsb(0)|p(p, s)⟩ = ū(p′, s′)u(p, s)σ(t), t = (p′ − p)2.

The numerical results for the real and imaginary parts of the scalar form factor at O(q4) are shown
in Fig. 19 for the extended on-mass-shell scheme (solid lines) and the infrared regularization scheme
(dashed lines). While the imaginary parts are identical in both schemes, the differences in the real parts
are practically indistinguishable. Note that for both calculations σ(0) and ∆σ ≡ σ(2M2

π) − σ(0) have
been adjusted to the dispersion results of Ref. [Gasser et al., 1991], ∆σ = (15.2 ± 0.4) MeV.

Figure 20 contains an enlargement near t ≈ 4M2
π for the results at O(q3) which clearly displays how

the heavy-baryon calculation fails to produce the correct analytic behavior not only at the tree level
but also in higher-order loop diagrams. Both real and imaginary parts diverge as t → 4M2

π .

5.3.2 Electromagnetic form factors

Imposing the relevant symmetries such as translational invariance, Lorentz covariance, the discrete sym-
metries, and current conservation, the nucleon matrix element of the electromagnetic current operator
J µ(x),

J µ(x) =
2

3
ū(x)γµu(x) − 1

3
d̄(x)γµd(x),

68
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P P-q

q

P-k

k k-q

Fig. 1. Triangle graph. The solid, dashed, and wiggly lines
represent nucleons, pions and an external scalar source, re-
spectively

3 Scalar form factor

We first wish to show that, in the sector with baryon
number 1, the standard chiral expansion in powers of me-
son momenta and quark masses converges in only part
of the low-energy region. For definiteness, we consider
the scalar form factor of the nucleon in the isospin limit
(mu = md = m̂),

⟨N(P ′, s′)| m̂ (ūu + d̄d) |N(P, s)⟩ = ū′u σ(t) ,

t = (P ′ − P )2 .

The first two terms occurring in the low-energy expansion
of this form factor were worked out long ago, on the ba-
sis of a one-loop calculation within the Lorentz invariant
formulation of the effective theory [1]. In that expansion,
t, m̂ and M2

π are treated as small quantities of O(p2),
while the nucleon mass represents a term of O(p0). In
view of the quark-mass factor occurring in the definition
of σ(t), the low-energy expansion starts at order p2, with
a momentum-independent term generated by L(2)

N :

σ(t) = −4c1 M2
π

+
3 g2

AM2
πmN

4F 2
π

{

(t − 2M2
π) γ(t) − Mπ

8πmN

}

+ O(p4) (3)

The constant c1 occurring here is a renormalized version
of the bare coupling constant in (1). Since the renormal-
ization depends on the framework used, we do not discuss
it at this preliminary stage. The contribution of order p3

is generated by the triangle graph shown in Fig. 1, and is
fully determined by Fπ and gA.

The term involves the convergent scalar loop integral

γ(t) =
1
i

∫

d4k

(2π)4
1

(M2− k2−iϵ) (M2−(k−q)2−iϵ)

× 1
(m2−(P −k)2−iϵ)

(4)

Here and in the following, we identify the masses occurring
in the loop integrals with their leading order values, Mπ →
M , mN → m.

The function γ(t) represents a quantity of O(1/p). Since
the external nucleon lines are on the mass shell, the func-
tion exclusively depends on t = q2, M and m. The func-
tion is analytic in t, except for a cut along the positive

real axis, starting at t = 4M2. The triangle graph also
shows up in the analysis of the πN-scattering amplitude
to one-loop order, so that the function γ(t) is relevant also
for that case.

The imaginary part of γ(t) can be expressed in terms
of elementary functions [1]:

Imγ(t) =
θ(t − 4M2)

8π
√

t (4m2 − t)
arctan

√

(t − 4M2)(4m2 − t)
t − 2M2 .

(5)

Dropping corrections of order t/m2 = O(p2), this expres-
sion simplifies to

Imγ(t) =
θ(t − 4M2)
16πm

√
t

{

arctan
2m

√
t − 4M2

t − 2M2 + O(p2)

}

.

(6)

The problem addressed above shows up in this formula:;
the quantity

x =
2m

√
t − 4M2

t − 2M2

represents a term of O(1/p). The standard chiral expan-
sion of Imγ(t) thus corresponds to the series arctan x =
π/2−1/x+1/(3x3)+ . . . , which, however, only converges
for |x| > 1. In the vicinity of t = 4M2, the condition is
not met, so that the chiral expansion diverges. The prob-
lem arises because the quantity x takes small values there,
while the low-energy expansion treats x as a large term of
O(1/p). In the region |x| < 1, we may instead use the con-
vergent series arctan x = x−x3/3+ . . . , but this amounts
to an expansion in inverse powers of p.

The rapid variation of the form factor near t = 4M2

is related to the fact that the function arctan z exhibits
branch points at z = ± i. The analytic continuation of
γ(t) to the second sheet therefore contains a branch point
just below the threshold:

(t − 4M2)(4m2 − t)
(t − 2M2)2

= −1 → t = 4M2 − M4

m2 .

This implies that, in the threshold region, the form fac-
tor does not admit an expansion in powers of meson mo-
menta and quark masses. As is shown in [3], the heavy-
baryon perturbation series to O(p3) coincides with the chi-
ral expansion of the relativistic result [1], and it is noted
in [5] that this representation does not make sense near
t = 4M2. The corresponding imaginary part amounts to
the approximation arctanx → π/2, so that the singu-
larity structure on the second sheet is discarded. Within
HBχPT, an infinite series of internal-line insertions must
be summed up to properly describe the behaviour of the
form factor near the threshold. The relativistic formula
(3), on the other hand, does apply in the entire low-energy
region, because it involves the full function γ(t) rather
than the first one or two terms in the chiral expansion
thereof.
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Proton and neutron magnetic moments: 
chiral extrapolation
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Octet baryon magnetic moments at NLO 
BChPT 

LO

NLO



Generalized Spin Polarizabilities

4

FIG. 3: Scalar polarizabilities for the proton and neutron. Red solid lines and blue bands represent, respectively, the LO and NLO results of
this work. Blue dashed line is the LO result in the HB limit. Black dotted lines represents the empirical result of MAID2007 [22]. The data
points at Q2 = 0 correspond with Refs [23] and [24] (purple and red point, respectively) for the proton, and [23] for the neutron. The data
point in the left upper panel atQ2 = 0.3 GeV2 is from Ref. [25].

FIG. 4: Generalized spin polarizabilities. Red solid lines and blue bands represent, respectively, the LO and NLO results of this work.
Black dotted lines represent MAID2007. Grey bands are the covariant BχPT calculation of Ref. [26]. Blue dashed line is the O(p4) HB
calculation [28]; off the scale in the upper panels. Red band is the IR calculation [30]. The data points for the proton γ0 at finite Q2 are from
Ref. [7] (blue dots), and at Q2 = 0 from [8] (purple square). For the neutron all the data are from Ref. [9].

Grey bands: EOMS + small scale

Blue dashed: O(p4) HB 

Red bands: IR calculation

Black dotted: MAID2007

Solid line: LO EOMS + delta

Blue bands: NLO EOMS + delta Phys.Rev. C90 (2014) 055202 



Problems reported in SU(3) HBChPT (1)
LHPC (A. Walker-Loud et al.),  Phys.Rev.D79:054502, 2009.

 C=1.2(2), D=0.715(50), F=0.453(50)



PACS-CS (K.-I. Ishikawa), Phys.Rev.D80:054502, 2009.  

PACS-CS (S. Aoki et al.),  Phys.Rev.D79:034503, 2009.  

Problems reported in SU(3) HBChPT (II)



✤ Octet (decuplet) baryon magnetic moments:                                 
 Phys.Rev.Lett.101:222002,2008;  Phys.Lett.B676:63-68,2009;  Phys.Rev.D80:034027,2009 

✤ Octet and Decuplet baryon masses      
Phys.Rev.D82:074504,2010; Phys.Rev.D84:074024,2011; JHEP12(2012)073; Phys.Rev.D 
D87:074001 (2013); Phys.Rev. D89:054034,2014 ; Eur.Phys.J. C74:2754,2014  

✤ Hyperon vector coupling f1(0)    
Phys.Rev.D79:094022,2009;arXiv:Phys.Rev. D89 (2014) 113007  

• Octet baryon axial coupling                      
Phys.Rev.D78:014011,2008，Phys.Rev. D90 (2014) 054502 

Some successful applications of covariant 
BChPT (in the three-flavor sector)



Two key factors for a reliable determination 
of the baryon sigma terms

• Lattice QCD simulations of baryon masses at 
various quark masses, volumes, and lattice 
spacings, and with various fermion/gauge actions

• A reliable formulation of ChPT, which not only 
can well describe the LQCD data, but also needs 
to satisfy all symmetry and analyticity constrains



landscape of latest 2+1 f LQCD simulations 
of g.s. octet baryon masses

• Extrapolate to the continuum:  
• Extrapolate to physical light quark masses: 
• Extrapolate to infinite space-time:
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Figure 2. (color online). The landscape of the PACS-CS Collaboration (red circles), the LHPC
Collaboration (blue squares), the QCDSF-UKQCD Collaboration (green diamonds), the HSC Col-
laboration (yellow upper triangles) and the NPLQCD Collaboration (sky-blue pentagons) in the
2M2

K �M2
⇡ vs M2

⇡ plane (left panel) and in the L vs M2
⇡ plane (right panel). The star denotes the

physical point with the physical light- and strange-quark masses.

volume e↵ects on the baryon masses. The large range of light pion masses provides an

opportunity to explore the applicability of chiral perturbation theory for the extrapolation

of baryon masses. Although the light u/d quark masses adopted are always larger than their

physical counterpart, the strange quark masses vary from collaboration to collaboration:

those of the PACS-CS and LHPC collaborations are larger than the physical one; those of

the HSC and NPLQCD groups are a bit smaller, while as those of the QCDSF-UKQCD

collaboration are all lighter than physical one.

In the L–M2
⇡ plane, it is seen that the PACS-CS and LHPC groups adopt a single

value of lattice volume, the HSC and QCDSF-UKQCD groups use the two di↵erent lattice

volumes and the NPLQCD employs four di↵erent lattice volumes for every ensembles in

order to study the finite-volume e↵ects on the baryon octet masses. Many of the simulations

are still performed with M�L from 3 to 5 and with M� larger than 300 MeV. As a result,

finite-volume corrections may not be negligible (see, e.g., Ref. [48]). In our study, we will

take into account finite-volume corrections a self-consist way as in Ref. [43, 48].

Except for the large di↵erent of light- and strange-quark masses and lattice size, there

are many di↵erent choices for lattice actions in the current lattice calculations,which lead

to be the same continuum theory. Therefore, it’s crucial to test all these simulation results,

whether they are consistent with each other [12].

In Appendix A, we tabulate the baryon octet masses of the PACS-CS, LHPC, HSC,

QCDSF-UKQCD and NPLQCD collaborations. The numbers are given in physical unites

using either the lattice scale specified in the original publications [5, 7, 8, 11] or the method

of ratios such as QCDSF-UKQCD [10]. It is di�cult to guess the applicability region of

SU(3) BChPT. To redue the uncertainty from higher order terms in the chiral expansion,

we take the lattice simulations with pion-masses M2
⇡ < 0.25 GeV2. And we single out

– 10 –

To obtain g.s. baryon masses in the physical world
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To obtain g.s. baryon masses in the physical world

Some of these simulations can be used to fix our 
low-energy constants



Systematic Description of the LQCD data  
with the EOMS BChPT

• NNLO EOMS BChPT study of the PACS-CS and LHPC data: 
Camalich, Geng, Vacas, PRD82(2010)074504 

• Finite volume corrections:  Geng, Ren,  Camalich,  Weise, 
PRD84(2011)074024;

• First systematic study of all publically available LQCD data: Ren, 
Geng, Camalich, Meng, Toki, JHEP12(2012)073;            

• Effects of virtual decuplet baryons: Ren, Geng, Meng, Toki, 
PRD87(2013)074001

• Continuum extrapolations: Ren, Geng, Meng, Eur.Phys.J. 
C74:2754,2014      
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• Finite volume corrections:  Geng, Ren,  Camalich,  Weise, 
PRD84(2011)074024;

• First systematic study of all publically available LQCD data: Ren, 
Geng, Camalich, Meng, Toki, JHEP12(2012)073;            

• Effects of virtual decuplet baryons: Ren, Geng, Meng, Toki, 
PRD87(2013)074001

• Continuum extrapolations: Ren, Geng, Meng, Eur.Phys.J. 
C74:2754,2014      

The EOMS BChPT can be trusted to predict 
the baryon sigma terms



Selection of LQCD data

• All nf=2+1 LQCD simulations 
– PACS-CS, LHPC, QCDSF-UKQCD, HSC, 

NPLQCD, BWM 
– BWM—not publicly available 
– HSC and NPLQCD—Low statistics



Selection of LQCD data

• All nf=2+1 LQCD simulations 
– PACS-CS, LHPC, QCDSF-UKQCD, HSC, 

NPLQCD, BWM 
– BWM—not publicly available 
– HSC and NPLQCD—Low statistics

PACS-CS, LHPC, QCDSF-UKQCD



An accurate determination of baryon 
sigma terms 

• Scale setting: mass independent (given by the LQCD 
simulations or self-consistently determined) vs. mass 
dependent (r0, r1, Xπ) 

• Isospin breaking effects: better constrain the LQCD 
LECs 

• Theoretical uncertainties caused by truncating chiral 
expansions: NNLO vs. N3LO; EOMS vs. FRR



Scale-setting effects on the determination 
of baryon sigma terms

• Lattice-scale setting  
– PACS-CS data with mass independent scale-

setting:  

– PACS data with mass dependent (r0) scale-setting: 

• Whether other LQCD data will show the same trend?

σ sN = 59 ± 7 (MeV)

σ sN = 21± 6 (MeV)

arXiv:1301.3231 
P.E. Shanahan∗, A.W. Thomas and R.D. Young



Three different fits at N3LO

• Mass independent 
– Lattice spacing a 

fixed to the published 
value 

– Lattice spacing a 
determined self-
consistently 

• Mass dependent 
– r0 for PACS-CS 
– r1 for LHPC 
– Xπ for QCDSF-

UKQCD

3

TABLE II. Predicted pion- and strangeness-sigma terms of the octet
baryons at the physical point by the NNLO BChPT with the LECs of
Table I.

EOMS FRR
Fit-I Fit-II Fit-III Fit-IV

�⇡N [MeV] 56(0) 47(1) 47(0) 53(1)

�⇡⇤ [MeV] 35(1) 30(1) 31(1) 34(1)

�⇡⌃ [MeV] 32(0) 27(1) 25(0) 27(1)

�⇡⌅ [MeV] 13(1) 12(1) 13(1) 13(1)

�sN [MeV] 35(6) 27(7) 21(6) 20(7)

�s⇤ [MeV] 147(7) 152(7) 162(7) 153(7)

�s⌃ [MeV] 218(7) 222(7) 226(7) 214(7)

�s⌅ [MeV] 295(7) 313(8) 332(7) 312(8)

the physical point, the experimental octet baryon masses are
also included in the fits. The best fit results are tabulated in
Table I. We have preformed four fits with either the EOMS
BChPT or the FRR BChPT of Ref. [29]. We have also al-
lowed the LECs F� and ⇤ to vary to get an estimation of the
induced variation. All the obtained �2/d.o.f. is larger than
1, indicating that higher-order chiral contributions need to be
taken into account. In addition, if one allows the F� to deviate
from the chiral limit value to take into account SU(3) breaking
effects, the EOMS BChPT can fit the data as well as the FRR
approach. It should be noted that the so-obtained F� is close
to its SU(3) average 1.17f⇡ with f⇡ = 92.1 MeV [59].

The correspondingly predicted sigma terms are listed in Ta-
ble II. It is seen that depending on the fits, the predicted baryon
pion- and strangeness-sigma terms can vary by about 20 MeV.
Nevertheless, given the relatively large �2/d.o.f., it is clear
that one needs to go to N3LO to have more confidence in the
predictions.

N3LO studies: At N3LO, the LQCD and experimental
meson masses are described by the next-to-leading order
ChPT [61] with the LECs of Refs. [62] and FVCs [63] are
taken into account but found to play an negligible role. In Ta-
ble III, we tabulate the LECs and the corresponding �2/d.o.f.
from three best fits to the LQCD mass data and the experi-
mental octet baryon masses. In the first fit, we use the lat-
tice spacings a determined by the LQCD collaborations them-
selves to obtain the hadron masses in physical units as done in
Ref. [30]. In the second fit, we determine the lattice spacing a
self-consistently. Interestingly, we find that the so determined
lattice spacings a are very close to the ones determined by
the LQCD collaborations. The PACS-CS deviation is 2.5%,
the LHPC deviation is 4.1%, and the QCDSF-UKQCD devi-
ation is 2.1%. The corresponding �2/d.o.f. also look simi-
lar. While in the third fit, we adopt the so-called mass depen-
dent scale setting, either from r0 for the PACS-CS data with
r0(phys) = 0.465(12) fm [64], r1 for the LHPC data with
r1(phys) = 0.31174(20) fm [32], or X⇡ for the QCDSF-
UKQCD data with X⇡(phys) = 0.4109 GeV [43]. The third
fit yields a smaller �2/d.o.f. and different LECs compared to
the other two fits.

In Fig. 1, we show the octet baryon masses as functions of

TABLE III. Values of the LECs from the best fits to the LQCD data
and the experimental octet baryon masses up to N3LO. The lattice
scale in each simulation is determined using both the mass indepen-
dent scale setting (MIS) and the mass dependent scale setting (MDS)
methods. In the MIS, both the original lattice spacings determined
by the LQCD collaborations “a fixed” and the self-consistently de-
termined lattice spacings “a free” are used (see text for details).

MIS MDS
a fixed a free

m0 [MeV] 884(11) 877(10) 887(10)

b0 [GeV�1] �0.998(2) �0.967(6) �0.911(10)

bD [GeV�1] 0.179(5) 0.188(7) 0.039(15)

bF [GeV�1] �0.390(17) �0.367(21) �0.343(37)

b1 [GeV�1] 0.351(9) 0.348(4) �0.070(23)

b2 [GeV�1] 0.582(55) 0.486(11) 0.567(75)

b3 [GeV�1] �0.827(107) �0.699(169) �0.553(214)

b4 [GeV�1] �0.732(27) �0.966(8) �1.30(4)

b5 [GeV�2] �0.476(30) �0.347(17) �0.513(89)

b6 [GeV�2] 0.165(158) 0.166(173) �0.0397(1574)

b7 [GeV�2] �1.10(11) �0.915(26) �1.27(8)

b8 [GeV�2] �1.84(4) �1.13(7) 0.192(30)

d1 [GeV�3] 0.0327(79) 0.0314(72) 0.0623(116)

d2 [GeV�3] 0.313(26) 0.269(42) 0.325(54)

d3 [GeV�3] �0.0346(87) �0.0199(81) �0.0879(136)

d4 [GeV�3] 0.271(30) 0.230(24) 0.365(23)

d5 [GeV�3] �0.350(28) �0.302(50) �0.326(66)

d7 [GeV�3] �0.435(10) �0.352(8) �0.322(7)

d8 [GeV�3] �0.566(24) �0.456(30) �0.459(33)

�2/d.o.f. 0.87 0.88 0.53

M2
⇡ (2M2

K � M2
⇡) using the LECs from Table III with the

physical light- and strange-quark masses. In order to cross-
check the validity of our N3LO BChPT fit, the BMW Collab-
oration data [26] are shown as well. It is clear that our three
fits yield similar results and are all consistent with the BMW
data, which are not included in our fits.

Using the best fit LECs, we predict the sigma terms of the
octet baryons and tabulate the results in Table IV. For com-

TABLE IV. Predicted pion- and strangeness-sigma terms of the octet
baryons by the N3LO BChPT with the LECs of Table III.

Ref. [48] MIS MDS
a fixed a free

�⇡N [MeV] 40(0) 55(1)(4) 54(1) 51(2)

�⇡⇤ [MeV] 23(0) 32(1)(2) 32(1) 30(2)

�⇡⌃ [MeV] 18(0) 34(1)(3) 33(1) 37(2)

�⇡⌅ [MeV] 6(1) 16(1)(2) 18(2) 15(3)

�sN [MeV] 4(1) 27(27)(4) 23(19) 26(21)

�s⇤ [MeV] 83(3) 185(24)(17) 192(15) 168(14)

�s⌃ [MeV] 228(3) 210(26)(42) 216(16) 252(15)

�s⌅ [MeV] 355(5) 333(25)(13) 346(15) 340(13)
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Evolution of baryon masses with u/d  and 
s quark masses in comparison with the 

BMW data
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FIG. 1. (color online) Dependence of octet baryon masses as a function of M2
⇡ and 2M2

K � M2
⇡ vs. the BMW [23] lattice data. The solid

and dash lines are obtained with the LECs from the Fit-I, II, and III. LQCD data points and BChPT results are obtained by use of the physical
strange quark mass. For the mB vs. M2

s̄s plane, all results are obtained by use of the physical u/d quark masses.

FIG. 2. (color online) Nucleon strangeness sigma term from lat-
tice calculation. The red circles denote N3LO BChPT, blue squares
represent NNLO BChPT and green diamonds are nf = 2 + 1

LQCD. The blue band and red band are our results up to NNLO and
N3LO, respectively. Data points are taken from the following refer-
ences: MILC(2009) [12], BMW(2012) [23], QCDSF-UKQCD [24],
MILC(2013) [13], JLQCD(2013) [19], Engelhardt [18], Junnarkar
& Walker-Loud [29], �QCD(2013) [20], Young and Thomas [22],
Martin-Camalich et al. [50], Shanahan et al. [26], Semke &
Lutz [25], Ren et al. [27].

are.
For comparison, the latest �-SU(3) results of Ref. [52] ) are

also listed. We can see that a relatively larger pion-sigma term

of nucleon, �⇡N = 53(2) MeV, is obtained, which is in rea-
sonable agreement with the latest ⇡-N scattering study [9],
�⇡N = 59(7) MeV. Our �⇡N is also consistent with the
JLQCD result [53], �⇡N = 50(4.5) MeV.

Our predicted �SN is compared with those of earlier studies
in Fig. 2. We classify the �sN into three groups according to
the calculation methods. First group is the results reported
by the nf = 2 + 1 LQCD simulations. For second and third
groups, the �sN is predicted by the NNLO and N3LO BChPT,
respectively, combined with the latest lattice baryon spectrum.
Our results are consistent with the average LQCD result on
the strange sigma term, �sN = 40(10) [29]. The extremely
accurate determination of Ref. [52] might be due to the fact
that the LECs are over constrained. Similar effects can be
seen in the NNLO fit of the present work, which has a much
smaller uncertainty compared to the N3LO fit.

Conclusion: In this work, we have performed an accu-
rate determination of the octet baryon sigma terms and found
�sN = 37(). A number of key issues are taken into ac-
count, including uncertainties induced by truncating chiral ex-
pansions and the lattice-scale setting method. In addition,
we have used the strong-interaction isospin splitting effects
from the LQCD simulations to further constrain the relevant
LECs. Within the spectrum method, a more precise value for
�SN can only be made possible by increasing statistics and
performing simulations at a even larger range of light-quark
masses both larger and smaller their physical counterparts.
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damental Research Funds for the Central Universities, the Re-
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Baryon sigma terms from N3LO BChPT

• All three scale-
setting 
methods yield 
similar baryon 
sigma terms
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FIG. 1. (color online). Octet baryon masses as a function of M2
⇡ and 2M2

K �M2
⇡ vs. the BMW LQCD data [19]. The solid, dashed, and dot-

dashed lines are obtained with the LECs from the three fits of Table I. On the left and right panels, the strange-quark mass and the light-quark
mass are fixed at their respective physical values.

lar. While in the third fit, we adopt the so-called mass depen-
dent scale setting, either from r0 for the PACS-CS data with
r0(phys.) = 0.465(12) fm [51], r1 for the LHPC data with
r1(phys.) = 0.31174(20) fm [25], or X⇡ for the QCDSF-
UKQCD data with X⇡(phys.) = 0.4109 GeV [32]. The third
fit yields a smaller �2/d.o.f. and different LECs compared to
the other two fits.

In Fig. 1, we show the octet baryon masses as functions of
M2

⇡ (2M2
K �M2

⇡) using the LECs from Table I with the phys-
ical light- (right panel) and strange-quark (left panel) masses.
In order to crosscheck the validity of our N3LO BChPT fit, the
BMW Collaboration data [19] are shown as well. It is clear
that our three fits yield similar results and are all consistent
with the high-quality BMW data, which are not included in
our fits.

Predicted baryon sigma terms. Using the best fit LECs,
we predict the sigma terms of the octet baryons and tabulate
the results in Table II. Our predictions given by the LECs of
Table I are consistent with each other within uncertainties,
and the scale-setting effects on the sigma terms seem to be

TABLE II. Predicted pion- and strangeness-sigma terms of the octet
baryons (in units of MeV) by the N3LO BChPT with the LECs of
Table I.

MIS MDS
a fixed a free

�⇡N 55(1)(4) 54(1) 51(2)

�⇡⇤ 32(1)(2) 32(1) 30(2)

�⇡⌃ 34(1)(3) 33(1) 37(2)

�⇡⌅ 16(1)(2) 18(2) 15(3)

�sN 27(27)(4) 23(19) 26(21)

�s⇤ 185(24)(17) 192(15) 168(14)

�s⌃ 210(26)(42) 216(16) 252(15)

�s⌅ 333(25)(13) 346(15) 340(13)

FIG. 2. (color online). Strangeness-nucleon sigma term determined
from different studies. The blue and red bands are our NNLO and
N3LO results, respectively.

small. Therefore, we take the central values from the fit to
the mass independent a fixed LQCD simulations as our fi-
nal results, and treat the difference between different lattice
scale settings as systematic uncertainties, which are given in
the second parenthesis of the second column of Table II. It is
clear that for �⇡N , uncertainties due to scale setting is dom-
inant, while for �sN statistics errors are much larger, calling
for improved LQCD simulations. It should be noted that we
have studied the effects of virtual decuplet baryons and varia-
tion of the LECs D, F , F�, and the renormalization scale µ,
and found that the induced uncertainties are negligible com-
pared to those shown in Table II. Furthermore, as shown in



Comparison with earlier studies

• Consistent with most 
recent LQCD studies and 
those of NNLO ChPT, e.g., 
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lar. While in the third fit, we adopt the so-called mass depen-
dent scale setting, either from r0 for the PACS-CS data with
r0(phys.) = 0.465(12) fm [51], r1 for the LHPC data with
r1(phys.) = 0.31174(20) fm [25], or X⇡ for the QCDSF-
UKQCD data with X⇡(phys.) = 0.4109 GeV [32]. The third
fit yields a smaller �2/d.o.f. and different LECs compared to
the other two fits.

In Fig. 1, we show the octet baryon masses as functions of
M2

⇡ (2M2
K �M2

⇡) using the LECs from Table I with the phys-
ical light- (right panel) and strange-quark (left panel) masses.
In order to crosscheck the validity of our N3LO BChPT fit, the
BMW Collaboration data [19] are shown as well. It is clear
that our three fits yield similar results and are all consistent
with the high-quality BMW data, which are not included in
our fits.

Predicted baryon sigma terms. Using the best fit LECs,
we predict the sigma terms of the octet baryons and tabulate
the results in Table II. Our predictions given by the LECs of
Table I are consistent with each other within uncertainties,
and the scale-setting effects on the sigma terms seem to be

TABLE II. Predicted pion- and strangeness-sigma terms of the octet
baryons (in units of MeV) by the N3LO BChPT with the LECs of
Table I.

MIS MDS
a fixed a free

�⇡N 55(1)(4) 54(1) 51(2)

�⇡⇤ 32(1)(2) 32(1) 30(2)

�⇡⌃ 34(1)(3) 33(1) 37(2)

�⇡⌅ 16(1)(2) 18(2) 15(3)

�sN 27(27)(4) 23(19) 26(21)

�s⇤ 185(24)(17) 192(15) 168(14)

�s⌃ 210(26)(42) 216(16) 252(15)

�s⌅ 333(25)(13) 346(15) 340(13)

FIG. 2. (color online). Strangeness-nucleon sigma term determined
from different studies. The blue and red bands are our NNLO and
N3LO results, respectively.

small. Therefore, we take the central values from the fit to
the mass independent a fixed LQCD simulations as our fi-
nal results, and treat the difference between different lattice
scale settings as systematic uncertainties, which are given in
the second parenthesis of the second column of Table II. It is
clear that for �⇡N , uncertainties due to scale setting is dom-
inant, while for �sN statistics errors are much larger, calling
for improved LQCD simulations. It should be noted that we
have studied the effects of virtual decuplet baryons and varia-
tion of the LECs D, F , F�, and the renormalization scale µ,
and found that the induced uncertainties are negligible com-
pared to those shown in Table II. Furthermore, as shown in
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Summary
✤ I have  explained how the baryon sigma terms 

(particularly those of the nucleon) are related to dark 
matter direct searches and the understanding of the 
quark-flavor structure of the nucleon.

✤ I have shown how a combination of lattice QCD 
simulations and baryon chiral perturbation theory 
allows us to make a reliable prediction of these 
terms. 
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for your attention!
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matrix elements of the pion and strangeness sigma commutators defined respectively as:

σπB =
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2MB
⟨B|ūu + d̄d|B⟩ (13)

σsB =
ms

2MB
⟨B|s̄s|B⟩ (14)
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where B may denote an octet or decuplet baryon. The sigma terms can be obtained from the chiral corrections to
the baryon masses through the Hellman-Feynman theorem (Refs.!!!)
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III. RESULTS

In the Figure 1 we show the Feynman diagrams that contribute in χPT up to O(p3) to the self-energy of the octet-
baryons and of the decuplet-resonances. Up to O(p2) there are only the tree-level contributions (a) that introduce
the dependence of the masses on the unknown LECs bD, bF and b0 from the Lagrangian (5) for the octet and γ0 and
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Summary and Outlook

✤ In addition, our (series of) studies showed 
- The extended-on-mass-shell (EOMS) BChPT provides a reliable 

framework to study the properties of the ground-state octet 
baryons 

- LQCD simulations can help determine the many unknown low-
energy constants which otherwise cannot be fixed 

✤ Many interesting observables remain unexplored within the EOMS 
framework 

– Axial, Vector, and Electromagnetic form factors of the g.s. octet 
baryons 

– Spin polarizabilities, TMDs and GPDs of the octet baryons 
– Hyperon-nucleon (hyperon) forces 
– ...



Finite volume corrections

• Physical origin: existence of boundary conditions  

• Momenta of virtual particles are discretized
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Chiral extrapolations upto N3LO in 
BChPT

JHEP12(2012)073;  
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Figure 3. (Color online). The lowest-lying baryon octet masses as functions of the pion mass. The
two bands correspond to the best O(q4) fit to lattice data Set-I and Set II, and the dot-dashed lines
and dashed lines are the best NLO and NNLO fits to lattice data Set-I. In obtaining the ChPT
results, the strangeness quark mass has been set to its physical value. The lattice numbers are
projected ones with N3LO BChPT with the LECs determined from the best fit to set-I and their
strange quark mass is also set to the physical value.

Table 7. Extrapolated baryon octet masses to the physical point of the O(q2), O(q3), and O(q4)
best fits. The error is only statistical.

B Exp. [12] Fit I Fit II Fit-I (NLO) Fit-I (NNLO)

N 0.940(2) 0.865(26) 0.936(10) 0.987(6) 0.876(3)

Λ 1.116(1) 1.076(18) 1.129(8) 1.118(7) 1.067(4)

Σ 1.193(5) 1.155(17) 1.193(7) 1.177(6) 1.126(4)

Ξ 1.318(4) 1.294(23) 1.310(8) 1.279(6) 1.288(4)

II seem to be closer to the data than those using the LECs from Fit I, though the latter

fit yields a smaller χ2/d.o.f.. The same is true for the NLO ChPT fit. It yields the largest

χ2/d.o.f. but the extrapolations are even closer to the physical values than the N3LO Set-I

– 15 –



Lattice spacing evolutions

• For LQCD simulations with mπ<500 MeV and a<0.15 fm, 
discretization effects are about 1 to 2 percent

lattice spacing evolutions

• For LQCD simulations with mπ<500 MeV and a<0.15 
fm, discretization effects are about 1 to 2 percent

17

−1.00

−0.75

−0.50

−0.25

0.00

0.00 0.05 0.10 0.15

R
Ν

 [%
]

a [fm]

Mπ=300 MeV
Mπ=400 MeV
Mπ=500 MeV

−1.00

−0.75

−0.50

−0.25

0.00

0.00 0.05 0.10 0.15

R
Λ

 [%
]

a [fm]

−2.00

−1.50

−1.00

−0.50

0.00

0.00 0.05 0.10 0.15

R
Σ 

[%
]

a [fm]

−2.00

−1.50

−1.00

−0.50

0.00

0.00 0.05 0.10 0.15

R
Ξ 

[%
]

a [fm]

Fig. 2 (color online). Finite lattice spacing effects on the octet baryon masses, RB = m
(a)
B /mB , as func-

tions of lattice spacing a for Mπ = 0.3, 0.4, and 0.5 GeV, respectively. The SW coefficient is set at

cSW = 1.715, the value of the PACS-CS Collaboration. The strange quark mass is fixed at its physical value

dictated by the LO ChPT.

tal data. Second, the mass formulas of Eq. (24) with discretization effects taken into account

are employed to fit the same data. In both fits, the FVCs to the LQCD simulations are always

taken into account self-consistently [75]. The LECs, together with the χ2/d.o.f., obtained

from the two best fits are tabulated in Table 3. It is clear that the 19 LECs remain similar

whether or not discretization effects are taken into account. The total χ2 changes from 30

for the first fit to 28 for the second fit, indicating that the data can be described slightly

better. On the other hand, the χ2/d.o.f. slightly increases from 0.91 to 0.97, implying that

discretization effects do not play an important role in describing the present LQCD data.4

4This is in contrast with the finite volume effects. In Ref. [75], it is shown that a self-consistent treatment of

finite volume effects is essential to obtain a χ2/d.o.f about 1.
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discretization effects do not play an important role in describing the present LQCD data.4

4This is in contrast with the finite volume effects. In Ref. [75], it is shown that a self-consistent treatment of

finite volume effects is essential to obtain a χ2/d.o.f about 1.
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TABLE I. Values of the LECs obtained from the best fits to the
LQCD simulations and the experimental octet baryon masses and the
corresponding �2/d.o.f.. The underlined numbers denote the values
at which they are fixed.

EOMS FRR
Fit-I Fit-II Fit-III Fit-IV

m0 [MeV] 757(7) 808(1) 829(7) 805(9)

b0 [GeV�1] �0.907(6) �0.710(2) �0.820(7) �0.922(20)

bD [GeV�1] 0.0582(22) 0.0570(22) 0.101(2) 0.116(3)

bF [GeV�1] �0.508(2) �0.411(11) �0.464(2) �0.510(8)

f0 [GeV] 0.0871 0.105(3) 0.0871 0.0871

⇤ or µ [GeV] 1.0 1.0 1.0 1.24(5)
�2/d.o.f. 3.0 1.6 2.4 1.8

baryons are listed in Table II. It is seen that depending on the
fits, the predicted pion-baryon and strangeness-baryon sigma
terms can vary by about 20 MeV. Nevertheless, given the rel-
atively large �2/d.o.f , we need to go to N3LO to have more
confidence in our predictions.

N3LO studies: In Table III, we tabulate the LECs and the
corresponding �2/d.o.f from three best fits to the LQCD mass
data. In the first fit, we use the lattice spacing a determined
by the LQCD collaboration themselves to obtain the hadron
masses in physical units as done in Ref. []. In the second fit,
we determine the lattice spacing a self-consistently. While in
the third fit, we adopt the so-called mass dependent scale set-
ting, either form r0 for the PACS-CS data, r1 for the LHPC
data, or X⇡ for the QCDSF-UKQCD data. Interestingly, we
find that the self-consistently determined lattice spacing a is
very close to the ones determined by the LQCD collabora-
tions. The largest deviation is 4.5 percent for the QCDSF-
UKQCD data. The corresponding �2/d.o.f. also look simi-
lar. This is not the case for the mass-independent lattice-scale
setting method, which yield a smaller �2/d.o.f. and different
LECs.

In Fig. 1, we show the light-quark (strange-quark) mass
evolution of octet baryon masses as functions of M2

⇡ (M2
s̄s)

using the LECs from Table III with the physical light- and
strange-quark mass. In order to crosscheck the validity of

TABLE II. Sigma terms of the octet baryons at the physical point,
predicted by the NNLO BChPT with the LECs of Table I.

EOMS FRR
Fit-I Fit-II Fit-III Fit-IV

�⇡N [MeV] 56(0) 47(1) 47(0) 53(1)

�⇡⇤ [MeV] 35(1) 30(1) 31(1) 34(1)

�⇡⌃ [MeV] 32(0) 27(1) 25(0) 27(1)

�⇡⌅ [MeV] 13(1) 12(1) 13(1) 13(1)

�sN [MeV] 35(6) 27(7) 21(6) 20(7)

�s⇤ [MeV] 147(7) 152(7) 162(7) 153(7)

�s⌃ [MeV] 218(7) 222(7) 226(7) 214(7)

�s⌅ [MeV] 295(7) 313(8) 332(7) 312(8)

TABLE III. Values of the LECs from the best fits to the LQCD
data and experimental results up to N3LO. In the mass indepen-
dent scale-setting, both the original lattice spacing determined by the
LQCD collaborations and self-consistent determined lattice spacing
are used. While in the mass dependent scale setting, r0 is used for the
PACS-CS data, r1 for the LHPC data, and X⇡ for QCDSF-UKQCD
data.) (see text for details).

MIS MDS
a fixed a free

m0 [MeV] 884(11) Fix-884 887(10)

b0 [GeV�1] �0.998(2) �0.906(�) �0.911(10)

bD [GeV�1] 0.179(5) 0.166(�) 0.039(15)

bF [GeV�1] �0.390(17) �0.363(�) �0.343(37)

b1 [GeV�1] 0.351(9) 0.291(�) �0.070(23)

b2 [GeV�1] �0.827(107) �0.648(�) �0.553(214)

b3 [GeV�1] 0.582(55) 0.458(�) 0.567(75)

b4 [GeV�1] �0.732(27) �0.679(�) �1.30(4)

b5 [GeV�2] �0.476(30) �0.360(�) �0.513(89)

b6 [GeV�2] 0.165(158) 0.130(�) �0.0397(1574)

b7 [GeV�2] �1.10(11) �0.941(�) �1.27(8)

b8 [GeV�2] �1.84(4) �1.38(�) 0.192(30)

d1 [GeV�3] 0.0327(79) 0.0372(�) 0.0623(116)

d2 [GeV�3] 0.313(26) 0.271(�) 0.325(54)

d3 [GeV�3] �0.0346(87) �0.0271(�) �0.0879(136)

d4 [GeV�3] 0.271(30) 0.245(�) 0.365(23)

d5 [GeV�3] �0.350(28) �0.290(�) �0.326(66)

d7 [GeV�3] �0.435(10) �0.351(�) �0.322(7)

d8 [GeV�3] �0.566(24) �0.474(�) �0.459(33)

�2/d.o.f. 0.87 0.84 0.53

our N3LO BChPT fit and the model-independent properties
of LQCD simulation, the BMW [23] Collaboration data are
shown as well. It is clear that our three fits yield similar re-
sults, which are consistent with the BMW data.

Using the best fitted LECs, we predict the sigma terms of
the octet baryons and tabulate the results in Table IV. For com-
parison, the latest �-SU(3) results of Ref. [52] ) are also listed.

TABLE IV. Pion- and strangeness-sigma terms (in the unit of MeV)
from the global fit of the “mass independent” and “mass dependent”
data of the PACS-CS, LHPC and QCDSF-UKQCD Collaborations.

Ref. [52] MIS MDS
a-fixed a-free

�⇡N [MeV] 40(0) 55(1) 52(�) 51(2)

�⇡⇤ [MeV] 23(0) 32(1) 30(�) 30(2)

�⇡⌃ [MeV] 18(0) 34(1) 31(�) 37(2)

�⇡⌅ [MeV] 6(1) 16(1) 14(�) 15(3)

�sN [MeV] 4(1) 27(27) 32(�) 26(21)

�s⇤ [MeV] 83(3) 185(24) 183(�) 168(14)

�s⌃ [MeV] 228(3) 210(26) 213(�) 252(15)

�s⌅ [MeV] 355(5) 333(25) 324(�) 340(13)
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our N3LO BChPT fit and the model-independent properties
of LQCD simulation, the BMW [23] Collaboration data are
shown as well. It is clear that our three fits yield similar re-
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• ChPT relies on the assumption that all high-energy 
degrees of freedom can be integrated out--not 
necessarily true for SU(3) BChPT
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Feynman diagrams/Lagrangians-no new 
unknown LECs

• Feynman diagrams 

• Lagrangians 

– Octet-Decuplet-Pseudoscalr coupling 

– mass corrections

( b ) (c )( a )

FIG. 1. Feynman diagrams contributing to the octet baryon masses with the intermediate decuplet reso-

nances. The solid lines correspond to octet baryons, the double lines to decuplet baryons, and the dashed

lines denote pseudoscalar mesons. Black dots indicate an insertion from the dimension one chiral La-

grangian (Eq. (3)), and black boxes (diamonds) indicate O(p2) mass insertions.

where we have used the so-called “consistent” coupling scheme for the octet-decuplet-pseudoscalar

vertices [57, 58]. The φ and B are the SU(3) matrix representations of the pseudoscalar mesons

and of the octet baryons. The coefficient Fφ is the meson-decay constant in the chiral limit, and C

denotes the φBT coupling.

The propagator of the spin-3/2 fields in d dimensions has the following form [59]

Sµν(p) = − /p+mD

p2 −m2
D + iϵ

[
gµν −

1

d− 1
γµγν −

1

(d− 1)mD
(γµpν − γνpµ)−

d− 2

(d− 1)m2
D

pµpν
]
.

(4)

B. Virtual decuplet contributions to the octet baryon masses

Because the baryon mass, which is of the same order as the chiral symmetry breaking scale

ΛChPT, does not vanish in the chiral limit, a systematic power-counting (PC) is destroyed

beyond the leading order calculation in BChPT [24]. In order to restore the chiral power-

counting, the extended-on-mass-shell (EOMS) renormalization scheme was proposed [49, 50].

The essence of the EOMS scheme is to perform an additional subtraction of power-counting

breaking (PCB) pieces beyond the M̃S orMS renormalization scheme. Different from the infrared

(IR) BChPT [60] and HBChPT [61], the EOMS BChPT is not only covariant, but also satisfies

all analyticity and symmetry constraints (see, e.g., Ref. [62] ). In addition, it converges relatively

faster [55, 63, 64]. In this work we use the EOMS scheme to remove the PCB terms from the

one-loop diagrams.

The octet baryon masses up to N3LO and with the virtual decuplet contributions can be written

as

mB = m0 +m(2)
B +m(3)

B +m(4)
B +m(D)

B . (5)

5

the effects of the virtual decuplet baryons in detail. A short summary is given in Sec. IV.

II. THEORETICAL FRAMEWORK

A. Chiral effective Lagrangians involving the decuplet baryons

The baryon decuplet consists of a SU(3)-flavor multiplet of spin-3/2 resonances, which are

represented with the Rarita-Schwinger field T abc ≡ T abc
µ (each element of T abc

µ is a four-component

Dirac spinor). The physical fields are assigned to the tensor as T 111 = ∆++, T 112 = ∆+/
√
3,

T 122 = ∆0/
√
3, T 222 = ∆−, T 113 = Σ∗+/

√
3, T 123 = Σ∗0/

√
6, T 223 = Σ∗−/

√
3, T 133 =

Ξ∗0/
√
3, T 233 = Ξ∗−/

√
3, and T 333 = Ω−.

The covariant free Lagrangian for the decuplet baryons is

LT = T̄ abc
µ (iγµναDα −mDγ

µν) T abc
ν , (1)

where mD is the decuplet-baryon mass in the chiral limit and DνT abc
µ = ∂νT abc

µ + (Γν , Tµ)abc, Γν

being the chiral connection (see, e.g., Ref. [32]) and with the definition (X, Tµ)abc ≡ (X)adT
dbc
µ +

(X)bdT
adc
µ +(X)cdT

abd
µ . In the last and following Lagrangians, we always apply the Einstein notation

to sum over any repeated SU(3)-index denoted by latin characters a, b, c, · · · , and (X)ab denotes

the element of row a and column b of the matrix representation of X . The totally antisymmetric

gamma matrix products are defined as: γµν = 1
2 [γ

µ, γν], γµνα = 1
2 {γ

µν , γα} = −iεµναβγβγ5,

with the following conventions: gµν = diag(1,−1,−1,−1), ε0,1,2,3 = −ε0,1,2,3 = 1 and γ5 =

iγ0γ1γ2γ3.

TheO(p2) chiral Lagrangian for the decuplet baryons is:

L(2)
T =

t0
2
T̄ abc
µ gµνT abc

ν ⟨χ+⟩+
tD
2
T̄ abc
µ gµν(χ+, Tν)

abc, (2)

with χ+ = 2χ = 4B0diag(ml, ml, ms) introducing the explicit chiral symmetry breaking, where

ml and ms are the average light-quark and strange-quark masses. The parameters t0, tD are two

unknown LECs.

Up toO(p3) the chiral effective Lagrangian, describing the interaction of the octet and decuplet

baryons with the pseudoscalar mesons, can be written as [55]

L(1)
φBT =

iC
mDFφ

εabc(∂αT̄
ade
µ )γαµνBe

c∂νφ
d
b +H.c., (3)
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Slightly better description of the volume 
dependence of the NPLQCD data

the LQCD data, even those excluded in the fit. The average deviation of the BChPT results from

the LQCD data, defined as 4

χ̃2 =
1

NLQCD

NLQCD∑

i=1

(
M i

LQCD −M i
BChPT

∆i
LQCD

)2

,

is 3.1, 2.5, 1.2 and 1.2 for the PACS-CS, LHPC, HSC, and QCDSF-UKQCD data, respectively.

Here, it should be noted that in Fig. 4, only the QCDSF-UKQCD data with Ns = 32 are shown

and those simulated in a smaller volume with Ns = 24 are not explicitly displayed. Including

them in the χ̃2, one would have obtained a χ̃2 = 22.3.

It is clear from the above comparisons that using the LECs determined from the best fit to

lattice data Set-I, the BChPT cannot well describe the LQCD data obtained in smaller volumes,
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FIG. 3. (Color online). Lattice volume dependence of the NPLQCD data in comparison with the EOMS

BChPT up to N3LO with (solid lines) and without (dashed lines) the virtual decuplet contributions. The

three black points with MφL > 4 are included in data Set-I, while the hollow points with MφL = 3.86 are

not.

4 The uncertainty of the lattice data, ∆i
LQCD, can be found in Ref. [48].
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Unfitted data can also reasonably well 
described
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FIG. 4. (Color online). The PACS-CS, LHPC, QCDSF-UKQCD and HSC lattice data in comparison

with the O+D BChPT best fit as functions of the pion mass. The lines in each panel (from bottom to

top) correspond to N , Λ, Σ and Ξ, respectively. The kaon mass is fixed using M2
K = a + bM2

π for the

corresponding lattice ensemble with a and b determined in Ref. [48]. The lattice data have been extrapolated

to infinite space-time using the corresponding BChPT fit. Xπ =
√

(M2
π + 2M2

K)/3, XN = (mN +mΣ +

mΞ)/3, where the meson and baryon masses are the physical ones.

particularly those of the QCSDSF-UKQCD data with Ns = 24. On the other hand, the virtual

decuplet contributions seem to be helpful in this regard. Furthermore, it should be noted that we

have chosen lattice data set-I by requiring Mπ < 500 MeV and MπL > 4. These criteria yielded

a χ2/d.o.f. = 1, but nevertheless, are a bit arbitrary. In the following subsection, we would like

to slightly relax the above criteria and study whether the LQCD data with smaller MπL can be

described at a reasonable sacrifice of the χ2/d.o.f..
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• Feynman-Hellmann theorem states 

• Using leading-order ChPT meson masses 

Baryon Pion and Strangeness Sigma terms

5 Pion- and strangeness baryon sigma terms

In this section, we evaluate the pion- and strangeness sigma terms for all octet baryons at

physical point using the mass formulas up to NNLO.

The light-quark sigma terms are important quantities in explaining the chiral symmetry

breaking e↵ects in QCD. In particular, for nucleon-sigma term if of vital importance to

understand the composition of nucleon mass and strangeness content of nucleon. The

accurate knowledge of the sigma terms is of essential importance in the interpretation of

the cross section for the detection of dark matter [52]. However, these quantities cannot

be directly measured by experiment, ChPT, with its LECs fixed by the LQCD data, can

make predictions for sigma terms [53–55].

The sigma terms are defined by scalar form factors of baryon at zero recoil. In this

work, we calculate all the baryon octet sigma terms �⇡B, �sB for B = N, ⇤, ⌃, ⌅ , and

through the Feynman-Hellmann theorem, which states:

�⇡B = mlhB(p)|ūu+ d̄d|B(p)i = ml
@MB

@ml
(5.1)

�sB = mshB(p)|s̄s|B(p)i = ms
@MB

@ms
. (5.2)

where ml = (mu +md)/2.

Other interesting quantities, like the strangeness content (yB) and the so-called ”di-

mensionless sigma terms” (flB, fsB) are also calculated

yB =
2hB(p)|s̄s|B(p)i

hB(p)|ūu+ d̄d|B(p)i =
ml

ms

2�sB
�⇡B

(5.3)

flB =
mlhB(p)|ūu+ d̄d|B(p)i

MB
=

�⇡B
MB

(5.4)

fsB =
mshB(p)|s̄s|B(p)i

MB
=

�sB
MB

. (5.5)

Using the previous Fit-I parameters and combining with the Eq. (5.1) and (5.3), we

obtain the results (Table 8) of the pion- and strangeness sigma terms �⇡B, �sB for all the

baryon octet members, and the corresponding strangeness content yB, ”dimensionless sigma

terms” flB, fsB. For the nucleon pion-sigma term at physical point, �⇡N = 42(2)(12), is in

reasonable agreement with the empirical determination coming from ⇡�N scattering data

Table 8. The sigma-terms, the strangeness content and the ”dimensionless sigma terms” for all
octet baryons at physical point. The first error is statistical, the second one systematic.

�⇡B [MeV] �sB [MeV] yB flB fsB
N 43(2)(12) 128(22)(55) 0.248(44)(127) 0.0457(21)(128) 0.136(23)(59)

⇤ 19(2)(15) 269(21)(66) 1.178(154)(974) 0.0170(18)(134) 0.241(19)(59)

⌃ 18(2)(13) 295(21)(50) 1.364(180)(1012) 0.0151(17)(109) 0.247(18)(42)

⌅ 4(1)(7) 395(20)(55) 8.221(2097)(144432) 0.00303(76)(531) 0.300(15)(42)
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Fig. 2. In (a) we show (amPS)2/(aµ) as a function of aµ. We plot the χPT fit of Eq. (5) applied to the raw data on the L = 24 lattice from the lowest four µ-values.
We represent the finite size correction by the dashed line. In (b) we show (amPS)2 as a function of aµ. Here we present two χPT fits with Eq. (5), one taking all
data points and one leaving out the point at the largest value aµ = 0.015. Also in figure (b) we show the L = 24 data points.

Fig. 3. We show afPS as a function of aµ together with fits to χPT formula Eq. (6). In (a) we show the fit applied to the raw data on the L = 24 lattice at the 4
lowest values of aµ. We represent the finite size correction by the dashed curve. In (b) we present two fits, one taking all data and one leaving out the point at the
largest value aµ = 0.015. Here we show only the finite size corrected (L → ∞) data points.

We now discuss the possible sources of systematic error.
Our analysis is based on lattice determinations of properties of
pseudo scalar mesons with masses in the range 300 to 500 MeV
on lattices with a spatial size slightly above 2 fm. Systematic er-
rors can arise from several sources:

(i) Finite lattice spacing effects. Preliminary results at a
smaller value of the lattice spacing that were presented in Refs.
[33,34] suggest that O(a) improvement is nicely at work and
that residual O(a2) effects are small.

(ii) Finite size effects. In order to check that next to lead-
ing order (continuum) χPT adequately describes these, we are
presently performing a run at β = 3.9 and aµ = 0.004 on a
323 · 64 lattice.

(iii) Mass difference of charged and neutral pseudo scalar
meson. In the appropriate lattice χPT power-counting for our

values of the lattice spacing and quark masses, i.e. a ∼ µ ∼ p2,
one gets the order of magnitude relation (mPS)2 − (m0

PS)2 =
O(a2Λ4

QCD) = O(p4), from which it follows that to the order
we have been working the effects of the pion mass splitting
do not affect, in particular, the finite size correction factors for
mPS and fPS. In spite of these formal remarks, it is possible,
however, that the fact that the neutral pion is lighter than the
charged one (by about 20% at aµ = 0.0040, see Section 3.4)
makes inadequate the continuum χPT description of finite size
effects adopted in the present analysis. This caveat represents a
further motivation for simulations on larger lattices, which will
eventually resolve the issue.

(iv) Extrapolation to physical quark masses. We are assum-
ing that χPT at next to leading order for the Nf = 2 case is
appropriate to describe the quark mass dependence of m2

PS and
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