The neutrino reactor anomaly and cosmological bounds ¹

Emilio Ciuffoli - TPCSF, IHEP, Chinese Academy of Sciences

TPCSF Cosmology Miniworkshop

Beijing, May 22-23, 2012

¹Based on EC, J Evslin, H Li and XM Zhang, "The Reactor Anomaly and Mass Varying Neutrinos"; in preparation

- Reactor Anomaly
 - Neutrino Anomalies
 - RENO
 - Double Chooz
 - Daya Bay
 - Data Analysis
- 2 Cosmological Bounds
 - Possible explanations
 - Sterile Neutrino Solution
 - Numerical Simulations

Neutrino Anomalies

Gallium Anomaly

- Neutrinos from radioactive sources inside the detector: baseline \simeq 0-4 m
- ullet Neutrino flux: $14\pm5\%$ lower than the predicted one

Reactor Anomaly

- Global fit from several very short-baseline reactor experiments (10-100 m)
- Neutrino flux: $5.7 \pm 2.3\%$ lower than the predicted one

Neutrino Anomalies

In experiments with baseline greater than 100 m the value of θ_{13} affects the anomaly

(smaller reactor anomaly \Leftrightarrow greater θ_{13})

Daya Bay collaboration measured the value of θ_{13} in a flux-independent way, using two near and one far detectors.

We can extend the analysis of the reactor anomaly also to the short baseline experiments (100-1000 m)

Our goal is to analyze the Daya Bay, RENO and Double Chooz results to obtain an estimation of θ_{13} and the reactor anomaly simultaneously.

Oscillation Probability

$$N_i^{\text{ex}} = (1+a) \sum_{j=1}^{n_{reactor}} N_{ij}^{th} \left(1 - \sin^2(2\theta_{13}) \int \sin^2\left[\frac{1.27\Delta m_{13}^2 d_{ij}}{E}\right] \rho_j(E) dE\right)$$

- The index i indicates the detector, the index j the reactor
- Nth_{ij} is the expected number of neutrinos in the case of no-oscillation.

$$N_{ij}^{th} = \frac{\epsilon_i P_j}{d_{ij}^2}$$

• $\epsilon_i =$ detector efficiency, $P_j =$ reactor power, $d_{ij} =$ detector-reactor distance, $\rho_j(E) =$ energy spectrum of the neutrinos from the detector j.

RENO

$\rho(E)$

- We can use the prompt spectrum (energy of the positron from the inverse beta decay): $E_{\bar{\nu}} \simeq E_{\rm pr} + 780 {\rm keV}$ However, the statistical errors are large and the quality of the energy calibration is unknown
- We found that using the sample neutrino energy spectrum from DayaBay 07 we can obtain good results (difference less than 1%)

Version 1

The theoretical flux is used

Version 2

Flux-independent analysis

Comparing the two versions we can obtain the theoretical prediction for the flux. However, for completeness, we perform also an analysis based only on N_{far}/N_{near} (information only on $\sin^2 2\theta_{13}$, not on a)

Double Chooz

The experiment consist in a detector at 1050 m from two reactor cores (\Rightarrow ONE experimental point)

We perform a rate analysis using the ratio between the measured events and the number of predicted interactions.

$$R = (1 + a) \left(1 - \sin^2(2\theta_{13}) \int \sin^2\left[\frac{1.267\Delta m_{13}^2 d}{E}\right] \rho(E) dE \right)$$

Double Chooz

The experiment consist in a detector at 1050 m from two reactor cores (\Rightarrow ONE experimental point)

We perform a rate analysis using the ratio between the measured events and the number of predicted interactions.

$$R = (1 + a) \left(1 - \sin^2(2\theta_{13})\sin^2\Theta_D\right)$$

Double Chooz

The experiment consist in a detector at 1050 m from two reactor cores (\Rightarrow ONE experimental point)

We perform a rate analysis using the ratio between the measured events and the number of predicted interactions.

$$R = (1 + a) \left(1 - \sin^2(2\theta_{13})\sin^2\Theta_D\right)$$

$n\sigma$ region

$$\left(1-\frac{R+n\sigma}{1+\textbf{\textit{a}}}\right)/{\sin^2\!\Theta_D}<\sin^2\!\left(2\theta_{13}\right)<\left(1-\frac{R-n\sigma}{1+\textbf{\textit{a}}}\right)/{\sin^2\!\Theta_D}$$

In the future Double Chooz will be provided of a near and a far detector \Rightarrow precision should be significantly increased

Daya Bay Results

6 reactors and 6 detectors \Rightarrow it is possible to perform a anomaly-independent analysis, finding only θ_{13} without using the theoretical flux.

$$\sin^2 2\theta_{13} = 0.092 \pm 0.016 \text{ (stat.)} \pm 0.005 \text{ (syst.)}$$

No information on the power of the reactors are released yet \Rightarrow we cannot evaluate the reactor anomaly from Daya Bay results.

When the informations on reactors will be release we can evaluate the theoretical flux and compare it with the best-fit prediction

Data Analysis

Ξ

Data Analysis

Possible explanations

Possible explanations of the anomaly

- Wrong theoretical model
- Absorption ⇒ Neutrino flux should decrease with distance ⇒ No such effect is detected (Ex: KamLAND)
- Sterile neutrino ⇒ Cosmological bounds? ► Additional hypothesis can reduce the tension with cosmological bounds (environmental dependence, cosmic strings, giant monopoles...)

Sterile Neutrino mass:

- VSB Reactor Anomaly: baseline >10 meters
- Gallium anomaly: baseline ≤ 3-4 m

$$m_
u \simeq 1 eV$$

 $(m_
u \simeq 0.5$ eV: OK for Reactor Anomaly, NOT for Gallium Anomaly)

Possible explanations

Possible explanations of the anomaly

- Wrong theoretical model
- Absorption ⇒ Neutrino flux should decrease with distance ⇒ No such effect is detected (Ex: KamLAND)
- Sterile neutrino ⇒ Cosmological bounds? ➡Additional hypothesis can reduce the tension with cosmological bounds (environmental dependence, cosmic strings, giant monopoles...)

Sterile Neutrino mass:

- VSB Reactor Anomaly: baseline >10 meters
- Gallium anomaly: baseline ≤ 3-4 m

$$m_
u \simeq 1 eV$$

 $(m_
u \simeq 0.5$ eV: OK for Reactor Anomaly, NOT for Gallium Anomaly)

Sterile Neutrino solution: Cosmological Constraints

Qualitative picture

LSS
$$\Rightarrow \Omega_m \nearrow$$

CMB
$$\Rightarrow N_{eff} = 4 \text{ compensate } \Omega_m \nearrow$$

Supernova la
$$\Rightarrow w \setminus$$
, to compensate $\Omega_m \nearrow$

BAO
$$\Rightarrow$$
 Absolute size of BAO $\nearrow \Rightarrow$ $w \nearrow$ to keep the angular size fixed

Strong bounds from the tension between SN Ia and BAO constraints.

This tension can be reduced allowing w to depend on $z \Rightarrow$ Quintom scenario

Numerical simulations

 $m_{\nu}=1$ eV compatible at 2σ

Numerical simulations

$$w = w_0 + (1 - a)w_a$$

Red curve: with the massive sterile neutrino Dotted curve: without the massive sterile neutrino

Summary

- If we use the theoretical flux for RENO the reactor anomaly is around 1.7%; otherwise the best fit value is around 6.7%
- The presence of a massive sterile neutrino $(m_{\nu}=1 \text{ eV})$ is at 2 σ from the present cosmological bounds in a quintom scenario
- The knowledge of the theoretical flux of the experiments is crucial; ⇒ the theoretical flux in Daya Bay experiment can significantly change this scenario
- BAO data are from region with a lower z than Supernova Ia
 ⇒ new BAO data with higher z could rule out this hypothesis

Thank You!